Entwurfsfassung 25.6.2011

Industrie- & Wirtschafts-Vereinigung Schaffhausen (IVS)

Vorstudie

Ausbau der Strassenverbindung entlang der Achse Neuhausen – Jestetten – Eglisau – Bülach

Prof. P. Spacek
Prof. HP. Lindenmann

Zürich, Juli 2011
Inhaltsverzeichnis

1. Einleitung .. 1
 1.1 Ausgangslage .. 1
 1.2 Auftrag .. 2
 1.3 Auftragsanalyse .. 3
 1.4 Grundlagen .. 4

2. Analyse der Verkehrssituation und der Verkehrsauswirkungen ... 5
 2.1 Heutige Verkehrssituation .. 5
 2.1.1 Datengrundlagen .. 5
 2.1.2 Erkenntnisse .. 5
 2.2 Verkehrssituation im Zustand 2030 ... 10
 2.2.1 Grundlagen und Modellberechnungen ... 10
 2.2.2 Erkenntnisse .. 11
 2.3 Volkswirtschaftlichen Folgekosten .. 12
 2.3.1 Heutiger Zustand .. 13
 2.3.2 Schätzung für Zustand 2030 ... 15
 2.4 Folgerungen aus der Analyse ... 16

3. Interessen und Ziele der Beteiligten ... 18

4. Lösungsansätze für kurzfristig realisierbare Verbesserungen .. 19
 4.1 Vorhandene Lösungsansätze ... 19
 4.1.1 Anpassung des Grosskreisels in einen zweistreifigen Kreisel .. 19
 4.1.2 Leistungsnachweis für den zweistreifigen Kreisel ... 20
 4.1.3 Anpassung des Grosskreisels zu einem Turbinenkreisel .. 22
 4.1.4 Leistungsnachweis für Turbinenkreisel ... 23
 4.2 Neue Verbesserungsmöglichkeiten .. 24
 4.2.1 Verbesserungen im Bereich der Grosskreisels Bülach .. 24
 4.2.2 Verbesserungen in der Durchfahrt Eglisau .. 30
 4.2.3 Verbesserungen in der Einfahrt Neuhausen am Rheinfall ... 31
 4.3 Folgerungen zu den kurzfristig realisierbaren Verbesserungen ... 32

5. Umfahrungen Eglisau und Jestetten .. 34
 5.1 Umfahrung Eglisau .. 34
 5.1.1 Ausgangslage ... 34
 5.1.2 Rahmenbedingungen für die Umfahrung .. 34
 5.1.3 Entwicklung der Linienführung .. 36
 5.1.4 Beschrieb der Umfahrungsvariante .. 37
 5.1.5 Kostenschätzung .. 39
 5.1.6 Verkehrsauswirkungen der Umfahrung ... 41
1. Einleitung

1.1 Ausgangslage

Die strassenseitige Anbindung des Kantons Schaffhausen an den Wirtschaftsraum Zürich erfolgt heute über zwei übergeordnete Strassenachsen (vgl. Übersichtsplan),

- die Nationalstrasse A4 nach Winterthur und ihre Fortsetzung über die A1 (zur Stadt Zürich) bzw. die A1 und A51 (zum Flughafen Zürich – Kloten)
- die Hauptstrasse Nr. 4 von Neuhausen am Rheinfall über Jestetten in Deutschland, Eglisau nach Büch – Nord (Autobahnende der A51). Bei dieser Verbindung handelt es sich um eine zweistreifige Strasse mit Gegenverkehr.

Abbildung 1: Übersichtsplan der Strassenverbindungen zwischen der Region Schaffhausen und dem Gebiet Zürich - Nord

Quelle: GIS-Browser Kanton Zürich
Entlang der beiden Achsen bestehen heute auf den Strassen zum Teil beträchtliche Verkehrsbehinderungen während der Spitzenzeiten:

1.2 Auftrag

Aufgrund der obigen Ausgangslage wurde die vorliegende Vorstudie in Auftrag gegeben, mit dem Ziel, Verbesserungsmöglichkeiten der heutigen Verkehrssituation entlang der Hauptsstrasse Nr. 4 zwischen Bülach und Neuhausen am Rheinfall aufzuzeigen. Im Vordergrund stehen dabei kurzfristig realisierbare Massnahmen, die geeignet sind, die bestehenden Verkehrsbehinderungen zu beseitigen oder zumindest zu reduzieren.

Nach Absprache mit den Beteiligten wurde der Auftrag von der Industrie- & Wirtschafts-Vereinigung Schaffhausen (IVS) wie folgt formuliert:

A. Strecke Neuhausen – Anschluss Bülach Nord A 51:

5. Aufzeigen neuer, kurzfristig realisierbarer Verbesserungen (mögliche Varianten) und Folgerungen bzgl. ihrer Reihenfolge und Realisierbarkeit.

B. Aufzeigen von Varianten, wie die beiden Hauptprobleme Eglisau und Jestetten allenfalls rascher einer Machbarkeit zugeführt werden können (insbesondere kostengünstigere Varianten) sowie

Aufzeigen der verkehrlichen Auswirkungen eines Ausbaus der oben genannten Achse auf die Gemeinde Neuhausen am Rheinfall und von erforderlichen Massnahmen, namentlich Verkehrskonkurrenz und Neuhauserwaldtunnel, um die nicht gewünschte erhöhte Belastung von Neuhausen am Rheinfall, insbesondere entlang der Zollstrasse zu verhindern. Soweit möglich sind dabei auch die Auswirkungen der in den nächsten fünf Jahren geplanten Verbesserungen im öffentlichen Verkehr zu berücksichtigen.

C. Aufzeigen des weiteren Abklärungsbedarfs, insbesondere sozioökonomischer Studien.

Firma Buchofer-Barbe AG, beratende Ingenieure ([1]) ausarbeiten, mit dem Ziel, die beiden Richtplaneinträge zu überprüfen und zu untersuchen, ob und mit welchen Massnahmen bis zur Realisierung der Richtplaneinträge eine Verbesserung des Verkehrsablaufs erreicht werden könnte. Diese Planungsstudie beschränkt sich auf die verkehrlichen Zusammenhänge.

Der Betrachtungsparameter und die Aufgabenstellung dieser Planungsstudie und jene der vorliegenden Untersuchung überlagern sich teilweise. Um Doppelspurigkeiten zu vermeiden, wurde deshalb vereinbart, die Ergebnisse der Studie [1] abzuwarten und in der vorliegenden Untersuchung zu berücksichtigen.

Zur Unterstützung der vorliegenden Untersuchungsarbeiten wurde das Ingenieurbüro SNZ Ingenieure und Planer AG in Zürich beigezogen. Ihm oblagen die Durchführung der Verkehrsmodellberechnungen, die Überprüfung der technischen Realisierbarkeit von baulichen Massnahmen sowie die entsprechenden Kostenschätzungen.

Unter Federführung von IVS beteiligten sich an der Finanzierung der Untersuchung zu dieser Vorstudie der Kanton Schaffhausen, die Zürcher Handelskammer sowie die Gemeinden Eglisau und Neuhausen am Rheinfall.

1.3 Auftragsanalyse

Durch den Einbezug der Gemeinden Neuhausen am Rheinfall, Jestetten und Eglisau erfolgte eine Auftragserweiterung. Für diese Gemeinden steht nicht primär die Reisezeitverkürzung für den Durchgangsverkehr zwischen Schaffhausen und Bülach, sondern die Entlastung der Ortsdurchfahrten im Vordergrund. Dadurch sollen die negativen Auswirkungen des motorisierten Individualverkehrs (MIV) in den Innerortsbereichen reduziert werden. Diese Forderungen lassen sich kurzfristig nur durch entsprechende Dosierungsmassnahmen an den Ortsgegenläufen umsetzen, was jedoch der Zielsetzung der ursprünglichen Aufgabenstellung der IVS – die Verkürzung der Reisezeiten - widersprechen würde.

Die unterschiedlichen Interessen der drei Gemeinden einerseits und jene der IVS bzw. der Region Schaffhausen andererseits lassen sich nur durch den Bau von Ortsumfahrungen vereinen. Im Falle der Gemeinde Neuhausen am Rheinfall kommen zusätzlich auch die Bestrebungen hinzu, mit Hilfe von Angebotsverbesserungen im Bahnbverkehr die MIV-Benutzer von der Strasse auf den öffentlichen Verkehr (S-Bahnen) zu verlagern. Die Ortsumfahrungen lassen sich jedoch in einem mittel- bis langfristigen Zeitraum realisieren. Hinzu kommt, dass die Realisierung der Umfahrung Eglisau mit hohen Kosten verbunden ist.

Der Gegenstand der vom Kanton Zürich in Auftrag gegebenen Planungsstudie [1] war die Überprüfung der zwei Richtplaneinträge, wobei die vorliegenden Zusammenhänge im Vordergrund standen. Da die beiden Einträge sowohl räumlich als auch materiell mit der vorliegenden Auftragsumschreibung zusammenhängen, müssen die Ergebnisse dieser Planungsstudie mit berücksichtigt werden.

Wie im Auftragsteil A3 angedeutet, sind verkehrspolitische und -rechtliche Aspekte nicht Gegenstand der vorliegenden verkehrstechnischen Untersuchung. Diese können sich auch im Zusammenhang mit den zu untersuchenden Ortsumfahrungen stellen.

Für die Umfahrung Eglisau mit der Linienführung und dem Ausbaustandard gemäss Richtplaneintrag werden die Baukosten vom Amt für Verkehr auf ca. CHF 300 Mio. geschätzt.
Auf dem deutschen Teilstück führt die Hauptstrasse Nr. 4 durch die Gemeinde Jestetten. Auch hier bestehen Bestrebungen für eine Ortsumfahrung. Gemäß Auskunft der zuständigen Verwaltungsstelle sei jedoch dieses Vorhaben in absehbarer Zeit nicht finanzierbar und im Verkehrswegeplan des Bundes nicht mehr enthalten.

1.4 Grundlagen
Für die vorliegende Untersuchung wurden folgende Grundlagen beschafft bzw. von den Beteiligten bereitgestellt:

- Bericht der Volkswirtschaftsdirektion des Kantons Zürich, Amt für Verkehr (2011): Planungsstudie Eglisau - Glattfelden; Verkehrliche Zusammenhänge; Teilbericht (Entwurfsfassung vom 7.1.2011), Buchofer Barbe AG, Zürich ([1])
- Arbeitspapier der Volkswirtschaftsdirektion des Kantons Zürich, Amt für Verkehr (2010): Planungsstudie Eglisau - Glattfelden; Bewilligungsfähigkeit Rheinquerung Eglisau, Buchofer Barbe AG ([2])
- Präsentation der Volkswirtschaftsdirektion des Kantons Zürich, Amt für Verkehr (2010): Planungsstudie Eglisau - Glattfelden; Fachdelegationssitzung 27.9.2010, Ch. Dasen / Ph. Dijkstra
- Diverse Unterlagen zum Projekt Umfahrung Eglisau (Bericht und Pläne), wie sie für den Richtplaneintrag verwendet wurden (Quelle: Ingenieur- und Vermessungsbüro Landolt AG, Eglisau)
- Verkehrsdaten der Fachstelle Lärmschutz des Kantons Zürich, Quelle http://www.laerm.zh.ch/
- Kanton Schaffhausen, Tiefbauamt, Abt. Planung und Verkehr: Verkehrszählungen 2009, Februar 2010 ([6])
- Kanton Schaffhausen, Baudepartement (2003): Nationalstrasse, Anschluss Schaffhausen-Süd, N 44.6, Umgestaltung Anschluss Schaffhausen-Süd mit einem Galgenbucktunnel; Verkehrsdaten, Verkehrsbelastungen, Erb+Partner, Winterthur ([7])
2. Analyse der Verkehrssituation und der Verkehrsauswirkungen

2.1 Heutige Verkehrssituation

In diesem Abschnitt wird der Verkehrsablauf entlang der Untersuchungsstrecke analysiert, mit dem Ziel, die wichtigsten Engpässe im heutigen Zustand abzugrenzen, das Ausmass allfälliger Reisezeitverluste zu quantifizieren und die Ursachen der Verkehrsbehinderungen zu eruieren.

2.1.1 Datengrundlagen

2.1.2 Erkenntnisse

- Erkenntnisse aus Planungsstudie ZH [1]

In [1] wird darauf hingewiesen, dass durch den Kreisel ein stetiger Verkehrsfluss aufrecht erhalten wird und dass in der MSP ein deutlich höherer Lastwagenanteil (7 bis 13%) als in der ASP (2 bis 3%) zu beobachten ist.

- Grosskreisel Bülach

Auf der einstreifigen Kreisfahrbahn (zwischen Ein- und Ausfahrt) wurden Verkehrsstärken zwischen 1’800 und 1’900 PWE/h2 gezählt (vgl. Anhang 3 in [1]). Die Kapazität dieses Grosskreisels ist gemes-

2 Bei den Personenwageneinheiten (PWE) werden die Fahrzeugmengen (Personen-, Liefer- und Lastwagen sowie Motorräder) auf die Einheit „Personenwagen“ umgerechnet.
sen an den einschlägigen Richtwerten in den Spitzenzeiten überschritten. Dies hat die folgenden Auswirkungen:

In der MSP
- Rückstau-länge (zeitweise) bis durch Eglisau (ca. 3.5 km)
- Rückstau-länge (zeitweise) bis Autobahnende A50 (ca. 0.8 km)
- Verlustzeiten aus Richtung Eglisau in der Grössenordnung bis ca. 15 min
- Verlustzeiten aus Richtung Glattfelden in der Grössenordnung bis ca. 5 min
- keine massgebenden Verlustzeiten aus Richtung Süden und Osten

In der ASP
- Verlustzeiten im Hardwald in der Grössenordnung bis ca. 10 min.
- Rückstau-länge (zeitweise) bis über die Autobahnausfahrt Bülach Nord hinaus (bis 3 km)
- Pförtnerwirkung für Verkehrsbelastungen in Eglisau: Die Verkehrsleistung des Hardwalds in Richtung Norden wird auf ca. 1‘200 Fz/h plafoniert. Folge davon ist eine "breite" verkehrliche Abendspitze (maximale Verkehrsbelastungen während 2 bis 3 Stunden pro Tag, vgl. auch Anhang 1, Zähler ZH 1190).

Abbildung 2: Beobachtete übergeordnete Stausituationen während der verkehrlichen Morgen- und Abendspitzenstunden, aus [1]

- Schaffhauserstrasse / Hardwald
 Die Belastungen auf der Schaffhauserstrasse befinden sich gemäss [1] an der oberen Grenze der Leistungsfaehigkeit. Für das Jahr 2007 werden folgende Werte angegeben:
 - DWV: 26‘700 Fz/Tag (zum Vergleich DTV\(^1\) 2007: 23‘400 Fz/Tag, DTV 2009: 24‘680 Fz/Tag)
 - ca. 2‘000 Fz/h während den Spitzenstunden in beiden Richtungen (zum Vergleich bei der Zählung vom 15.04.2010: In der MSP 2‘025 PWE/h, in der ASP 2‘065 PWE/h)
 - ca. 1‘500 Fz/h während der MSP Richtung Bülach
 - ca. 1‘200 Fz/h während der ASP Richtung Grosskreisel Bülach

- Ortsdurchfahrt Eglisau
 Die Ortsdurchfahrt (Zürcher-/ Schaffhauserstrasse) weist hohe Verkehrsbelastungen von 20‘600 Fahrzeugen (DWV-Daten 2009) pro Tag auf (zum Vergleich DTV 2009: 19‘030 bis 19‘090 Fz/Tag). An

\(^1\) Durchschnittlicher Täglicher Verkehr DTV als Mittelwert aller Tage des Jahres
den Knoten mit dem Lokalstrassennetz sind die Einfahrt auf die Ortsdurchfahrt sowie das Linksabbiegen auch aufgrund der hohen Lastrichtungsanteile während den verkehrlichen Spitzenzeiten erschwert. Die heutige Verkehrssituation wird in [1] wie folgt zusammengefasst:

- Schwerverkehrsanteil von ca. 10% während den morgendlichen Spitzenstunden und den Tagesstunden (nicht während der abendlichen Spitzenstunden)
- Klare Lastrichtungen (Morgenspitzenstunde in Fahrtrichtung Süd / Zürich; Abendspitzenstunde in die Gegenrichtung)
- Während der verkehrlichen Morgenspitze stockender Kolonnenverkehr auf der gesamten Ortsdurchfahrt infolge Überlastung des Grosskreisels Bülach
- Während der verkehrlichen Abendspitze sind die Verkehrsmengen (in Richtung Nord) mit ca. 1'200 Fz/h durch die Plafonierungswirkung des Grosskreisels Bülach reduziert
- Die Ortsdurchfahrt verursacht durch die hohen Verkehrsmengen eine hohe Trennwirkung
- Durch die starken Gefällverhältnisse und dem relativ hohen Lastwagenanteil entstehen starke Beeinträchtigungen durch Lärm- und Luftemissionen.

Erkenntnisse aus der vorliegenden Untersuchung

Die durchgeführten Messfahrten (vgl. Tabelle 1) bestätigen, dass für die Verkehrsbehinderungen entlang der erwähnten Strassenverbindung der Grosskreisels Bülach von zentraler Bedeutung ist.

Behinderungen in Fahrtrichtung Süd – Nord:

Aus dem Vergleich zwischen Abendspitze (AS) und Zwischenzeit (ZZ) im oberen Tabellenteil ist ersichtlich, dass die massgebende Behinderung im Abschnitt zwischen Ende der A51 und dem Grosskreisel besteht. Die Reisezeitdifferenz von ca. 3.8 Min. ist jedoch deutlich kleiner als die in [1] angegebenen ca. 10 Min. Die von ca. 66 auf ca. 22 km/h deutlich reduzierte Geschwindigkeit deutet darauf hin, dass in diesem Zustand ein dichter Kolonnenverkehr herrschte. Die Reisezeitdifferenzen auf den übrigen Abschnitten waren nur geringfügig, eine gewisse Behinderung ist nur im Innerortsbereich von Jestetten aufgetreten.

Über die gesamte Strecke zwischen Ende der A51 und Neuhausen am Rheinfall betrachtet, ergaben sich Reisezeitverluste in der Abendspitze von ca. 4.5 Min. oder ca. 18% der Reisezeit während der Zwischenzeit.

Behinderungen in Fahrtrichtung Nord – Süd:

4 Dies zeigen auch die während der Messfahrt gemachten Videoaufnahmen aus dem Fahrzeug.
Von Bedeutung ist auch die während der AS nur geringfügig höhere Reisezeit im Hardwald. Die mittlere Geschwindigkeit zwischen Grosskreisel Bülach und der A51 von ca. 61 km/h während der AS (gegenüber ca. 65 km/h in der ZZ) zeigt, dass der Abfluss aus dem Grosskreisel mit relativ hoher Verkehrsqualität gewährleistet ist. In dieser Fahrtrichtung wurden im Hardwald während der Erhebungswoche im Juni 2010 keinerlei Behinderungen beobachtet.

Über die gesamte Strecke betrachtet, ergaben sich zwischen Morgenspitze und Zwischenzeit deutlich größere Reisezeitverluste als in der ungekehrten Fahrtrichtung. Die ca. 10,0 Min. entsprechen ca. 31% der Reisezeit ohne Behinderung.

Tabelle 1: Ergebnisse der Reisezeitmessungen zwischen Bülach und Neuhausen am Rheinfall (Ergebnisse für Werktage im Juni 2010)

<table>
<thead>
<tr>
<th>Fahrtrichtung Süd - Nord (Bülach - Neuhausen am Rheinfall)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abschnitt</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ende A51 - Kreisel Bülach (Chrüzstr.)</td>
</tr>
<tr>
<td>Kreisel Bülach (Chrüzstr.) - Einf. Eglisau</td>
</tr>
<tr>
<td>Einf. Eglisau - Rheinbrücke (Mitte)</td>
</tr>
<tr>
<td>Rheinbrücke (Mitte) - Ausf. Eglisau (Kreisel)</td>
</tr>
<tr>
<td>Ausf. Eglisau (Kreisel) - Zoll Rafz</td>
</tr>
<tr>
<td>Zoll Rafz - Einf. J estetten (Kreisel)</td>
</tr>
<tr>
<td>Einf. J estetten (Kreisel) - Ausf. J estetten</td>
</tr>
<tr>
<td>Ausf. J estetten - Zoll Neuhausen</td>
</tr>
<tr>
<td>Zoll Neuhausen - Einf. Neuhausen</td>
</tr>
<tr>
<td>Einf. Neuhausen - Bahnunterführung</td>
</tr>
</tbody>
</table>

Fahrtrichtung Nord - Süd (Neuhausen am Rheinfall - Bülach)

Abschnitt	Vzul (km/h)	Länge (m)	Geschwindigkeiten (km/h)	Reisezeiten (Min.)				
			MS	ZZ	Diff.	MS	ZZ	Diff.
Bahnunterführung - Ausf. Neuhausen	50	1559	51.1	56.8	5.7	1.63	1.60	0.03
Ausf. Neuhausen - Zoll Neuhausen	60	364	52.0	33.1	-18.9	0.42	0.68	-0.24
Zoll Neuhausen - Einf. J estetten	100	1985	77.8	64.4	-13.5	1.53	1.85	-0.32
Einf. J estetten - Ausf. J estetten (Kreisel)	50	1608	44.3	37.4	-6.9	2.18	2.58	-0.40
Ausf. J estetten (Kreisel) - Zoll Rafz	100	4532	75.5	71.6	-4.0	3.60	3.80	-0.20
Zoll Rafz - Einf. Eglisau (Kreisel)	80	5613	67.1	73.2	6.1	5.02	4.60	0.42
Einf. Eglisau (Kreisel) - Rheinbrücke (Mitte)	50	924	13.0	34.7	21.6	4.26	1.60	2.66
Rheinbrücke (Mitte) - Ausf. Eglisau	50	767	13.9	34.9	21.0	3.32	1.32	2.00
Ausf. Eglisau - Kreisel Bülach (Chrüzstr.)	80	2001	15.0	52.2	37.2	6.01	2.30	3.71
Kreisel Bülach (Chrüzstr.) - Beginn A51	80	2288	60.7	65.4	4.6	2.26	2.10	0.16

AS = Abendspitze
MS = Morgenspitze
ZZ = Zwischenzeit, jeweils am gleichen Messtag wie AS oder MS

Tabelle 1: Ergebnisse der Reisezeitmessungen zwischen Bülach und Neuhausen am Rheinfall (Ergebnisse für Werktage im Juni 2010)

Verkehrsbelastungen:

Aus der Tabelle 2 ist ersichtlich, dass die Verkehrsmengen vom Süden (Hardwald) nach Norden zunächst abnehmen, wobei die deutlichste Reduktion beim Kreisel in Eglisau erfolgt. Die niedrigsten Belastungen...

Aus Tabelle 2 ist auch ersichtlich, dass auf dem zürcherischen Streckenteil die werktäglichen Verkehrsmengen (DWV) ca. 8 bis 11% höher liegen als die Durchschnittswerte aller Wochentage (DTV). Die zum Vergleich angegebenen Daten aus Modellberechnungen liegen durchwegs höher als die Zählwerte; die Unterschiede liegen auf dem zürcherischen Streckenteil zwischen ca. 2 und 15%, beim Grosskreisel Büllach liegt die Summe des auf den 4 Armen einfahrenden Verkehrs sogar 17% höher als gezählt.5

Die Tabelle 2 zeigt auch, dass der mit Abstand am stärksten belastete Innerortsabschnitt die Durchfahrt von Eglisau ist. Mit über 20’000 Fz/Tag sind hier die Verkehrsmengen fast dreimal höher als in Jestetten und um über ca. 8’000 Fz/Tag höher als am Ende der Zollstrasse in Neuhausen am Rheinfall.

<table>
<thead>
<tr>
<th>Standort/Abschnitt</th>
<th>Daten aus Zählungen</th>
<th>Verhältnis</th>
<th>Daten aus Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>DTV 2009</td>
<td>DWV 2009 / 2007</td>
<td>DTV 2010</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Ende A51 – Kreisel Büllach / Hardwald</td>
<td>24'682</td>
<td>26'743</td>
<td>1.08</td>
</tr>
<tr>
<td>Kreisel Büllach; Summe der Zufahrtsbe-</td>
<td>-</td>
<td>33'800</td>
<td>-</td>
</tr>
<tr>
<td>lastungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eglisau-Süd</td>
<td>19’092</td>
<td>20’810</td>
<td>1.09</td>
</tr>
<tr>
<td>Eglisau-Nord</td>
<td>19’039</td>
<td>20’753</td>
<td>1.09</td>
</tr>
<tr>
<td>Zählstelle Hüntwangen (Eglisauerstr.)</td>
<td>6’844 (2007)</td>
<td>7’460 (2007)</td>
<td>1.09</td>
</tr>
<tr>
<td>Eglisau (Kreisel) – Zoll Rafz / Lotstetten</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zoll Rafz / Lotstetten</td>
<td>7’685</td>
<td>8’523</td>
<td>1.11</td>
</tr>
<tr>
<td>Durchfahrt Jestetten</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zoll Neuhausen</td>
<td>9’100</td>
<td>9’910**</td>
<td>1.09**</td>
</tr>
<tr>
<td>Einfahrt Neuhausen – Schützenstrasse</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Schützenstrasse – Bahnunterführung</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Zollstrasse</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

* Modellwerte für Zustand 2010 aus der Planungsstudie ZH [1] übernommen
** Aus Umrechnung mit Faktor DWV/DTV von 1.09
() Klammerwerte in Neuhausen = Prognose aus Modellberechnungen in [7]

Tabelle 2: Verkehrsdaten im Bereich der H4 in Fz/Tag im heutigen Zustand

- **Verkehrstechnische Beurteilung und Folgerungen**

Aus der Analyse der heutigen Verkehrssituation geht hervor, dass die heutigen Verkehrsbedarfungen in den Spitzenzeiten primär durch die beschränkte Kapazität des Grosskreisels Büllach und durch die ausgeprägten Lastrichtungen (Morgen-/Abendspitze) des hier dominierenden Nord-Süd-Verkehrs verursacht werden. Die Folgerung daraus: Kurzfristig realisierbare Verbesserungsmassnahmen müssen sich auf die Entschärfung dieses Engpasses konzentrieren.

Wie sich aus der Gegenüberstellung der Reisezeiten zwischen den Spitzen- und Zwischenzeiten ergab, sind im Vergleich zu diesem zentralen Engpass die Verkehrsbedarfungen, die auf den übrigen Streckenabschnitten entstehen von untergeordneter Bedeutung (Ortsdurchfahrt Eglisau, Zollstrasse in Neuhausen am Rheinfall) oder sie bestehen heute in den Spitzenzeiten nicht (Streckenabschnitt zwischen Eglisau-Nord und Neuhausen am Rheinfall).

5 In [1] wird dies auf teilweise ältere Zählwerte und auf die nicht durchgeführte Nachkalibration des Modells zurückgeführt.

2.2 Verkehrssituation im Zustand 2030

2.2.1 Grundlagen und Modellberechnungen

6 Die entsprechenden Modellunterlagen wurden uns vom Ingenieurbüro Buchofer Barbe AG zur Verfügung gestellt.
7 Die neuen Modellberechnungen wurden durch das Ingenieurbüro SNZ Ingenieure und Planer AG in Zürich durchgeführt.
Folgende Modellberechnungen wurden durchgeführt (vgl. auch Anhang 3):

<table>
<thead>
<tr>
<th>Verkehr</th>
<th>Strassenetz</th>
<th>Anhang Nr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basisberechnungen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DWV 2010, Ist-Zustand (neukalibriert)</td>
<td>Zustand 2010</td>
<td>3.1</td>
</tr>
<tr>
<td>- DWV 2030, Referenzzustand</td>
<td>Zustand 2010</td>
<td>3.2</td>
</tr>
<tr>
<td>- Relativer Zuwachs DWV 2010 bis DWV 2030, Referenzzustand</td>
<td>Zustand 2010</td>
<td>3.3</td>
</tr>
<tr>
<td>- DWV 2030, Referenzzustand 1</td>
<td>Zustand 2010 mit Galgenbucktunnel</td>
<td>3.4</td>
</tr>
<tr>
<td>Untersuchungsfälle:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- DWV 2030, Untersuchungsfall 1</td>
<td>Zustand 2010 mit Galgenbucktunnel und mit Umfahrung Eglisau</td>
<td>3.5</td>
</tr>
<tr>
<td>- DWV 2030, Untersuchungsfall 2</td>
<td>Zustand 2010 mit Galgenbucktunnel und mit Umfahrungen Eglisau und Jestetten</td>
<td>3.6</td>
</tr>
<tr>
<td>- DWV 2030, Untersuchungsfall 3</td>
<td>Zustand 2010 mit Galgenbucktunnel und mit Umfahrungen Eglisau, Jestetten und mit Neuhauserwaldtunnel</td>
<td>3.7</td>
</tr>
<tr>
<td>Differenzdarstellungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Querschnittsdifferenzen DWV 2030, Referenzzustand 1</td>
<td>Referenzzustand 1: Mit Galgenbucktunnel MINUS Referenzzustand</td>
<td>3.8</td>
</tr>
<tr>
<td>- Querschnittsdifferenzen DWV 2030, Untersuchungsfall 1</td>
<td>Untersuchungsfall 1: Umfahrung Eglisau MINUS Referenzzustand 1</td>
<td>3.9</td>
</tr>
<tr>
<td>- Querschnittsdifferenzen DWV 2030, Untersuchungsfall 2</td>
<td>Untersuchungsfall 2: Umfahrungen Eglisau und Jestetten MINUS Referenzzustand 1</td>
<td>3.10</td>
</tr>
<tr>
<td>- Querschnittsdifferenzen DWV 2030, Untersuchungsfall 3</td>
<td>Untersuchungsfall 3: Umfahrungen Eglisau, Jestetten und mit Neuhauserwaldtunnel MINUS Referenzzustand 1</td>
<td>3.11</td>
</tr>
</tbody>
</table>

Tabelle 3: Übersicht der durchgeführten Modellberechnungen

2.2.2 Erkenntnisse

- **Künftige Verkehrssituation bei unveränderten Strassenbedingungen**

In Tabelle 4 sind die Ergebnisse der Modellberechnungen für den Zustand 2030 (Referenzzustand) den Werten im Zustand 2010 (Ist-Zustand) gegenübergestellt. Für den Vergleich wurde das heutige Strassennetz in beiden Zuständen unverändert belassen.

Aus Tabelle 4 geht hervor, dass bei unveränderten Strassenbedingungen zwischen den zwei Planungszuständen eine Verkehrszunahme entlang der H4 von durchschnittlich 17.6% prognostiziert wird8. Die für die einzelnen Abschnitte ermittelten Zunahmen der nächsten 20 Jahre variieren zwischen ca. 11.6 und 22.5%. In absoluten Zahlen werden zwischen Eglisau-Nord und Bülach DWV-Werte von über 25‘000 Fz/Tag erwartet. Solche Belastungen können auf einer zweistreifigen Straße nur dann verarbeitet werden, wenn die Dauer der Spitzenzeiten massiv ausgedehnt wird. Dabei ist von Bedeutung, dass die morgendlichen und abendlichen Spitzenzeiten bereits heute jeweils zwei Stunden dauern (Zählstelle ZH 1190, Hardwald, vgl. Anhang 1). Diesem Umstand wird man bei der Abschätzung der volkswirtschaftlichen Folgekosten (vgl. 2.3) Rechnung tragen müssen.

Vorstudie Strassenverbindung Neuhausen – Jestetten – Eglisau – Bülach

Zunahme 2030/2010

<table>
<thead>
<tr>
<th>Abschnitt</th>
<th>Länge [m]</th>
<th>DWV 2010 [Fz/Tag]</th>
<th>DWV 2030 [Fz/Tag]</th>
<th>Zunahme 2030/2010 [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bahnunterführung Zollstrasse – Schützenstrasse</td>
<td>1'559</td>
<td>13'570</td>
<td>15'650</td>
<td>2'080</td>
</tr>
<tr>
<td>Schützenstrasse – Ausfahrt Neuhausen</td>
<td>1'050</td>
<td>11'900</td>
<td>18'500</td>
<td>18.4</td>
</tr>
<tr>
<td>Ausfahrt Neuhausen – Zoll Neuhausen</td>
<td>364</td>
<td>10'050</td>
<td>11'900</td>
<td>18'500</td>
</tr>
<tr>
<td>Zoll Neuhausen – Einfahrt Jestetten</td>
<td>1'085</td>
<td>10'050</td>
<td>11'900</td>
<td>18'500</td>
</tr>
<tr>
<td>Einfahrt Jestetten – Ausfahrt Jestetten (Kreisel)</td>
<td>1'608</td>
<td>6'470 – 7'840</td>
<td>7'220 – 9'050</td>
<td>750 – 1'210</td>
</tr>
<tr>
<td>Ausfahrt Jestetten (Kreisel) - Zoll Rafz</td>
<td>4'532</td>
<td>6'280 – 8'800</td>
<td>7'400 – 10'210</td>
<td>1'850</td>
</tr>
<tr>
<td>Zoll Rafz - Einfahrt Eglisau (Kreisel)</td>
<td>5'613</td>
<td>8'800 – 14'740</td>
<td>10'210 – 17'250</td>
<td>1'850</td>
</tr>
<tr>
<td>Einfahrt Eglisau - Rheinbrücke</td>
<td>924</td>
<td>21'140</td>
<td>25'400</td>
<td>4'260</td>
</tr>
<tr>
<td>Rheinbrücke - Ausfahrt Eglisau</td>
<td>767</td>
<td>21'840</td>
<td>26'750</td>
<td>4'910</td>
</tr>
<tr>
<td>Ausfahrt Eglisau - Kreisel Bülach</td>
<td>2'001</td>
<td>22'700</td>
<td>27'970</td>
<td>5'200</td>
</tr>
<tr>
<td>Kreisel Bülach; Summe der Zufahrtsbelastungen</td>
<td>-</td>
<td>39'500*</td>
<td>46'400*</td>
<td>6'900</td>
</tr>
<tr>
<td>Kreisel Bülach - Beginn A51 / Hardwald</td>
<td>2'288</td>
<td>30'800*</td>
<td>36'100*</td>
<td>5'300</td>
</tr>
<tr>
<td>Länge total</td>
<td>21'641</td>
<td>durchschnittliche Zunahme gewichtet [%]</td>
<td>17.6</td>
<td></td>
</tr>
</tbody>
</table>

Auswirkungen des Galgenbucktunnels

Volkswirtschaftlichen Folgekosten

Für die volkswirtschaftlichen Folgekosten werden in der Regel folgende Effekte berücksichtigt:

- Zeitgewinne bzw. Zeitverluste der Benutzer
- Fahrzeugbetriebskosten der Benutzer
- Betriebs- und Unterhaltskosten der Betreiber
- externe Kosten: Unfallfolgekosten sowie soziale Kosten der Luftverschmutzung, des Verkehrslärms und soziale Kosten von Störungen im Verkehrsablauf

In den zwei nachfolgenden Abschnitten werden für die Verbindung zwischen Neuhausen am Rheinfall und Bülach die Verkehrskosten, bestehend aus den Zeitverlustkosten und den Unfallfolgekosten⁹ abgeschätzt.

Für die Unfallfolgekosten (vgl. Anhänge 5.1 und 5.2) wurde als Grundlage die Unfallauswertung der Kantons- polizei Zürich für die Strecke Bülach-Nord – Rafz (Staatsgrenze) der Zeitperiode 1.1.2007 – 31.12 2009 (3 Jahre) verwendet. Für diese Strecke konnten auch die Unfall- und Verunfalltenraten ermittelt werden. Für die Abschnitte in Deutschland und im kurzen Abschnitt im Kanton Schaffhausen waren keine Angaben erhältlich. Für die Abschätzung der Unfallfolgekosten mussten deshalb Hochrechnungen vorgenommen werden (vgl. 2.3.1 und 2.3.2).

2.3.1 Heutiger Zustand

- Zeitverlustkosten

 Wie aus dem Anhang 4.1 ersichtlich, ergaben sich im heutigen Zustand die jährlichen Zeitverlustkosten, die durch regelmäßige Überlastungen in den Spitzezeiten entstehen, zu ca. 3.45 Mio. CHF. Davon entfallen ca. 1.99 Mio. CHF auf den Zustand in der Morgenspitze (Fahrtrichtung Nord - Süd) und ca. 1.46 Mio. CHF auf den Zustand in der Abendspitze (Fahrtrichtung Süd - Nord). Die grössten Teilbeträge entfallen (erwartungsgemäss) auf die Abschnitte Ausfahrt Eglisau - Grosskreisel Bülach (Morgenspitze) und Ende A51 - Grosskreisel Bülach bzw. Hardwald (Abendspitze).

 Im Vergleich zu den obigen Kosten fallen jene, die bei Störungen durch Unfälle oder Pannen ausserhalb der Spitzenzeiten auftreten, mit ca. 0.43 Mio. CHF relativ niedrig aus. Dies hängt mit den deutlich niedrigeren stündlichen Verkehrsmengen, die ausserhalb der Spitzenzeiten (inklusive Nachtstunden) auftreten (im Durchschnitt ca. 550 Fz/h, entspricht ca. 4% des DWV) zusammen.

- Unfallfolgekosten

 Die Berechnung der Unfallfolgekosten ist im Anhang 5.1 zusammengestellt. Auf dem Zürcher Streckenteil (Abschnitte 6-10) ereigneten sich in drei Jahren 136 Unfälle mit insgesamt 47 Verunfallten, wovon drei der Verunfallten tödlich verunglückten. Daraus ergaben sich die auf die Fahrleistung bezogene mittlere Unfall- und Verunfalltenrateⁱ⁰ für die gesamte Strecke zu 0.91 und 31.6 (vgl. Anhang 5.1). Zwischen den einzelnen Abschnitten bestehen jedoch beträchtliche Unterschiede:

 Die Raten sind auf den innerortsabschnitten von Eglisau wesentlich höher als auf den ausserortsabschnitten. In folgender Tabelle sind die Raten (Uₚ, VUₚ) mit den Normwerten aus dem Entwurf zu SNR 671 714 [5], welche die Durchschnittswerte für die Strassenkategorien innerorts und ausserorts repräsentieren, verglichen. Daraus ist ersichtlich, dass die Raten auf den zwei H₄-Abschnitten innerorts (Durchfahrt Eglisau) deutlich über den Durchschnittswerten für diese Strassenkategorie liegen.

 Bei den drei Zürcher H₄-Abschnitten ausserorts weisen deren zwei über- bis durchschnittliche Werte auf, während der Abschnitt 6 (Zoll in Rafz - Einfahrt Eglisau / Kreisel) eine deutlich unterdurchschnittliche Unfall- und Verunfalltenhäufigkeit aufweist.

⁹ Die Unfallfolgekosten umfassen die medizinischen Heilungskosten, Kosten für den Produktionsausfall, Wiederbesetzungskosten, immaterielle Kosten, administrative Kosten, Sachschäden sowie Polizei- und Rechtsfolgekosten.

¹⁰ Die Unfallrate entspricht der Anzahl Unfälle (Uₚ) pro Million Fzkm, die Verunfalltenrate ist die Anzahl Verunfallte (Getötete und Verletzte, VUₚ) pro 100 Millionen Fzkm. Die Fahrleistung resultiert aus dem Produkt des DTV (Fz/Tag), der Abschnittslänge (km) und der Zeitperiode des Unfallgeschehens (in Tagen).
Vorstudie Strassenverbindung Neuhausen – Jestetten – Eglisau – Bülach

Strassenkategorie / Abschnitt der HS 4	Unfallrate Ü₈ \[U / 10^6 \text{Fzkm} \]	Verunfalltenrate VU₈ \[\text{VU} / 10^8 \text{Fzkm} \]
Norm-Richtwerte für Strassen innerorts (aus [5][21]) | 2.08 | 82
Werte auf HS4 auf Abschnitten innerorts (Eglisau) | 2.20 – 3.94 | 91-93
Norm-Richtwerte für Strassen ausserorts (aus [5][21]) | 0.63 | 33
Werte auf HS4 auf Abschnitten ausserorts | 0.26- 1.05 | 5.6 – 54.4

Tabelle 5: Vergleich der Unfall- und Verunfalltenraten

Auffallend hoch sind die Unfallfolgekosten in Eglisau: Auf der nur ca. 1.7 km langen Ortsdurchfahrt resultieren heute jährliche Unfallkosten von ca. 2.6 Mio. CHF. Dies entspricht einem Viertel der Kosten auf der gesamten, 21.6 km langen Strecke. Durch die Realisierung der Umfahrung Eglisau könnten die Unfallfolgekosten massiv reduziert werden. Wenn man davon ausgeht, dass auf der Umfahrung etwa durchschnittliche Unfall- und Verunfalltenraten der Strassenkategorie ausserorts zu erwarten sind (vgl. Tabelle 5), würden sich die heutigen Kosten von 2.6 Mio./Jahr um etwa zwei drittel reduzieren.

Bei der Hochrechnung der Unfallfolgekosten für die Abschnitte in Deutschland und im Kanton Schaffhausen wurden die folgenden Festlegungen gemacht:

- Für Ausserorts-Abschnitte (zwischen Jestetten und Zoll in Rafz sowie zwischen Jestetten und Neuhausen am Rheinfall) wurden die niedrigsten jährlichen Unfallkosten pro km aus allen Abschnitten ausserorts auf der H4 im Kanton Zürich eingesetzt (ca. 0.77 Mio. CHF/km auf dem Abschnitt 6). Auch hierbei handelt es sich um eine günstige Annahme, weil der Ausserorts-Abschnitt 6 sehr niedrige Raten aufweist.

Die hochgerechneten Werte für die H4-Abschnitte in Deutschland und im Kanton Schaffhausen sind in der Tabelle des Anhangs 5.1 kursiv eingetragen.

- Zusammenfassung für den Zustand heute

Aus den ermittelten Zeitverlust- und Unfallfolgekosten resultieren heute auf der ca. 21.4 km langen H4-Strecke zwischen Neuhausen am Rheinfall und Bülach Nord jährliche Verkehrskosten von ca. 14.5 Mio. CHF (vgl. Tabelle 6). Davon entfallen ca. 3.9 Mio. CHF auf die Zeitverlustkosten und ca. 10.6 Mio. CHF auf die Unfallfolgekosten.

Zeitverlustkosten durch regelmässige Überlastungen in Spitzenzeiten [Mio CHF]	3.45
Zeitverlustkosten bei Störungen durch Unfälle/Pannen ausserhalb Spitzenzeiten [Mio CHF]	0.43
Unfallkosten [Mio CHF]	10.57
Total pro Jahr [Mio CHF]	14.45

Tabelle 6: Zusammenstellung der jährlichen Verkehrskosten für den heutigen Zustand

2.3.2 Schätzung für Zustand 2030

- Zeitverlustkosten

 Für die Schätzung der Zeitverlustkosten durch regelmässige Überlastungen in den Spitzenzeiten werden folgende Festlegungen mitberücksichtigt:

 - In Abschnitten, die bereits 2010 ausgelastet sind, bewirkt die Dwv-Zunahme eine Ausdehnung der Dauer von Spitzenzeiten und eine Verdichtung der Abstände im Stau von 15 m/Fz auf 10m/Fz. Diese Festlegung bewirkt eine überproportionale Erhöhung der Zeitverluste und eine Ausdehnung des Staus auf die stromaufwärts liegenden Abschnitte.
 - Im Hardwald wird im Zustand 2030 die Kapazität der freien Strecke auch in Richtung Süd erreicht. Da der Abfluss zur A51 durch die dortige Aufweitung auf 2 Fahrstreifen gewährleistet ist, wird hier von einer langsam fahrenden Fahrzeugkolonne, bei einem mittleren Fahrzeugabstand von 30m ausgegangen.
 - Bei der Einfahrt Neuhausen wird angenommen, dass die im Agglomerationsprogramm vorgesehene Pförtner-Lichtsignalanlage vorhanden ist (Dosierung der stadtewärts fahrenden Fahrzeuge in den Spitzenzeiten, vgl. dazu in 4.2.3).

 Für die Kostenermittlung wurden aus Vergleichbarkeitsgründen die gleichen Ansätze wie im heutigen Zustand verwendet. Die Ergebnisse sind im Anhang 4.2 zusammengestellt. Die jährlichen Zeitverlustkosten, die durch regelmässige Überlastungen in den Spitzenzeiten entstehen, werden im Zustand 2030 auf ca. 7.7 Mio. CHF geschätzt. Auf Basis der heutigen Kostansätze bedeutet dies mehr als eine Kostenverdopplung gegenüber dem heutigen Zustand (3.5 Mio. CHF). Von den insgesamt 7.7 Mio. CHF im Zustand 2030 entfallen ca. 4.1 Mio. CHF auf den Zustand in der Morgenspitze (Fahrtrichtung Nord - Süd) und ca. 3.6 Mio. CHF auf den Zustand in der Abendspitze (Fahrtrichtung Süd - Nord). Wie im Zustand heute, entfallen die grössten Teile in der Abendspitze auf die Abschnitte Ausfahrt von Eglisau - Grosskreisel Bülach (Morgenspitze) und Ende A51 - Grosskreisel Bülach bzw. Hardwald (Abendspitze).

 Auch bei den Zeitverlustkosten, die bei Störungen durch Unfälle oder Pannen ausserhalb der Spitzenzeiten auftreten, ergab die Schätzung eine deutliche Kostenerhöhung. Die jährlichen Zeitverlustkosten werden im Zustand 2030 auf ca. 0.62 Mio. CHF geschätzt, im Zustand heute waren es ca. 0.43 Mio. CHF.

- Unfallfolgekosten

 Bei der Abschätzung der Unfallfolgekosten in einem künftigen Zustand müssen eigentliche Unfallprognosen angestellt werden. Da dies stets einen heiklen Vorgang darstellt, sind besonders vorsichtige Annahmen und Festlegungen angezeigt. Die Berechnung der Raten im Unfallgeschehen geht von der Hypothese aus, dass dort wo häufiger gefahren wird (mehr Verkehr) eine entsprechend höhere Unfallwahrscheinlichkeit zu erwarten ist. Dies kann sich, muss aber nicht in höheren Unfallraten manifestieren. Um auf der sicheren (konservativen) Seite zu liegen, wird bei der vorliegenden Abschätzung davon ausgegangen, dass sich die heutigen Unfall- und Verunfalltenraten nicht weiter erhöhen werden. Dafür sprechen die Tatsachen,

 - dass bereits heute gegenüber den normierten Durchschnittswerten erhöhte Raten auf der Strecke vorhanden sind

12 Ermittlung der Fahrleistung aus dem gewichteten Mittelwertes des Dwv und der stündlichen Belastung ausserhalb der Spitzenzeiten im Zustand 2030
13 Z.B. im Abschnitt Ende A51 - Grosskreisel Bülach von heute 2 Std. auf 3 Std. im Zustand 2030.
- und dass infolge der deutlichen Verdichtung des Verkehrs in den Spitzenzeiten und damit einer Ver-
langsamung des Verkehrs keine deutliche Zunahme folgenschwerer Unfälle zu erwarten ist.

Die Schätzung der Unfallfolgekosten auf Basis der heutigen Kostenansätze ist im Anhang 5.2 zusam-
mengestellt. Die Hochrechnung der Unfallkosten bei den H4-Abschnitten in Kanton Schaffhausen und in
Deutschland erfolgte wie im Zustand 2007 – 2009 (vgl. 2.3.1 und Anhang 5.1). Für die Prognose der Unfall-
und Verunfalltenzahlen wurden die folgenden Festlegungen gemacht:

- Die künftige Anzahl der Unfälle ergibt sich aus der Annahme unveränderter Unfallraten sowie aus
den erhöhten Fahrleistungen, die aus Zunahme der täglichen Verkehrsmengen (DTV) im Zustand
2030 gemäss Berechnungen im Verkehrsmodell resultieren.

- Die künftige Anzahl der Verunfallter ergibt sich analog zu jener der Unfälle, wobei die Zahl der Getöt-
eten im Zustand 2030 als unverändert angenommen wird.

- Die Berechnung der Fahrleistungen in den einzelnen Abschnitten basiert auf dem gewichteten Mit-
telwert des DTV von 13'735 Fz/Tag. Dies entspricht einer Erhöhung des DTV gegenüber Zustand
2010 (11'737 Fz/Tag) von ca. 17%. Bei der abschnittsweise Erhöhung der DTV-Werte wurden die Auf-
wertungsfaktoren des DWV übernommen.

Aufgrund obiger Festlegungen und der erhöhten Fahrleistung würde sich die Zahl der Unfälle pro Jahr
auf dem Zürcher Streckenteil (Abschnitte 6-10) von 45 auf 53 Unfälle erhöhen; die jährliche Zahl der Ver-
unfallten erhöht sich nur um ca. 19% (von 16 auf 19 Verunfallte), wobei die Zahl der Getöteten als unver-
ändert angenommen wurde.

Bei der Schätzung der Unfallfolgekosten resultieren im Zustand 2030 jährliche Kosten von insgesamt ca.
11.7 Mio. CHF (davon ca. 7.2 Mio. CHF auf dem Zürcherischen Streckenteil). Gegenüber dem heutigen Zu-
stand (10.6 Mio. CHF) ergibt sich eine Erhöhung um ca. 10%. Allerdings ist hierbei zu berücksichtigen,
dass im Zustand 2030 entsprechend höhere Kostenansätze anfallen würden.

Wie beim Zustand 2010 (Anhang 5.1) sind die hochgerechneten Werte für die H4-Abschnitte in Deutsch-
land und im Kanton Schaffhausen in der Tabelle des Anhangs 5.2 kursiv eingetragen.

- Zusammenfassung für den Zustand 2030

Für den Zustand 2030 werden die jährlichen Verkehrskosten auf der ca. 21.4 km langen H4-Strecke zwi-
schen Neuhausen am Rheinfall und Bülach Nord auf knapp 20 Mio. CHF geschätzt (vgl. Tabelle 7). Davon
defallen ca. 8.3 Mio. CHF auf die Zeitverlustkosten und ca. 11.7 Mio. CHF auf die Unfallfolgekosten. Dabei
ist zu beachten, dass diese Kosten auf den gleichen Ansätzen wie im Zustand 2010 (Preisstand 2005) ba-
sieren.

Zeitverlustkosten durch regelmässige Überlastungen in Spitzenzeiten [Mio CHF]	7.69
Zeitverlustkosten bei Störungen durch Unfälle/Pannen außerhalb Spitzenzeiten [Mio CHF]	0.62
Unfallkosten [Mio CHF]	11.65
Total pro Jahr [Mio CHF]	19.96

Tabelle 7: Schätzung der jährlichen Verkehrskosten für den Zustand 2030

2.4 Folgerungen aus der Analyse

- Verkehrssituation

Die Analyse der Verkehrssituation hat gezeigt, dass die heutigen Verkehrsbehinderungen in den Spitzen-
zeiten primär durch die beschränkte Kapazität des Grosskreisels Bülach und durch die ausgeprägte Last-
richtungen (Morgen-/Abendspitze) des hier dominiierenden Nord-Süd-Verkehrs verursacht werden. Von
diesen Behinderungen ist neben dem Durchgangsverkehr zwischen Schaffhausen und Bülach / Flugha-
fen in Kloten vor allem die Gemeinde Eglisau betroffen. Die Ortsdurchfahrt weist mit über 20'000 Fz/Tag
eine Verkehrsbelastung auf, die bereits heute an der Kapazitätsgrenze für Streckenabschnitte von zwei-
streifigen Strassen innerorts liegt. Dadurch werden in den Spitzenzeiten die Überquerbarkeit der Strasse
für Fussgänger sowie das Einmünden von Fahrzeugen aus den Quartierstrassen beeinträchtigt. Daraus
muss gefolgert werden, dass eine Verkehrsentlastung dieser Gemeinde erforderlich ist und die Förde-
runz einer entlastenden Ortsumfahrung bereits im heutigen Zustand in hohem Masse berechtigt ist.

Die kurzfristig realisierbaren Verbesserungsmassnahmen müssen sich somit auf die Entschärfung dieses für die Verbindung Schaffhausen - Bülach / Flughafen in Kloten zentralen Engpasses konzentrieren (vgl.
in Kapitel 4). Im Vergleich zu Behinderungen, die durch den Engpass Grosskreisel verursacht werden, sind jene, die heute auf den übrigen Streckenabschnitten vorhanden sind, von untergeordneter Bedeutung.

Für die Entwicklung bis zum Planungszustand 2030 wird gemäss Modellberechnungen eine mittlere Zu-

nahme von ca.17,6% erwartet (vgl. Tabelle 4). Dabei sind die mit über 20% höchsten Zuwachsraten in Eglisau und zwischen Eglisau und Grosskreisel Bülach zu verzeichnen. Angesichts der bereits im heutigen Zustand bestehenden Verkehrsbehinderungen bedeutet dies, dass ohne entsprechende Massnahmen sich hier die Stausituationen zeitlich und räumlich massiv ausdehnen würden.

Demgegenüber sind die im Planungszustand 2030 zu erwartenden Verkehrsbelastungen in den Inner-
ortsdurchfahrten von Jestetten (bis ca. 9'050 Fz/Tag) und Neuhausen am Rheinfall (bis ca. 15'650 Fz/Tag) deutlich niedriger als jene in Eglisau (bis ca. 26'750 Fz/Tag). Dabei ist auch von Bedeutung, dass der im Planungszustand 2030 im Betrieb stehende Galgenbucktunnel auf der H4 nur eine unwesentliche Ent-
lastung bewirkt.

Eine wesentliche Folgerung bildet die Empfehlung in [1], wonach die als Richtplaneintrag enthaltene
Verbindung der A50 und A51 auch langfristig nicht erforderlich sei. Dieser Umstand muss bei der Evalua-
tion von Verbesserungsmassnahmen im kritischen Abschnitt des Grosskreisels Bülach (vgl. in Kapitel 4) berücksichtigt werden.

Volkswirtschaftliche Folgekosten

Die volkswirtschaftlichen Folgekosten der oben beschriebenen Verkehrssituation auf der H4 sind für die zwei Planungszustände in folgender Tabelle einander gegenübergestellt. Demnach ist mit einer Zunahme von ca. 38% auf jährlich ca. 20 Mio. CHF zu rechnen. Dabei werden im Zustand 2030 die gleichen Kos-
tenansätze verwendet wie im Zustand 2010 (Preisbasis des Jahres 2005).

Aus der Aufstellung ist ersichtlich, dass die grösste Kostenzunahme bei den Zeitverlusten infolge regel-
mässiger Überlastungen in Spitzenzeiten zu erwarten ist. Diese werden mehr als verdoppelt. Demge-
genüber wird bei den Unfallkosten – auch als Folge der konservativen Annahmen – eine Erhöhung von

<table>
<thead>
<tr>
<th></th>
<th>2010</th>
<th>2030</th>
<th>Veränderung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zeitverlustkosten durch regelmässige Überlastungen in</td>
<td>3.45</td>
<td>7.69</td>
<td>122.90%</td>
</tr>
<tr>
<td>Spitzenzeiten [Mio. CHF]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Zeitverlustkosten bei Störungen durch Unfälle/Pannen</td>
<td>0.43</td>
<td>0.62</td>
<td>44.19%</td>
</tr>
<tr>
<td>ausserhalb Spitzenzeiten [Mio. CHF]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unfallkosten [Mio. CHF]</td>
<td>10.57</td>
<td>11.65</td>
<td>10.22%</td>
</tr>
<tr>
<td>Total pro Jahr [Mio. CHF]</td>
<td>14.45</td>
<td>19.96</td>
<td>38.13%</td>
</tr>
</tbody>
</table>

Tabelle 8: Gegenüberstellung der jährlichen volkswirtschaftlichen Folgekosten in den Zu-
ständen 2010 und 2030

3. Interessen und Ziele der Beteiligten

Entsprechend dem Auftragsteil A3 werden in diesem Kapitel die schriftlichen Stellungnahmen der beteiligten Stakeholder zu den Interessen und Zielen der Vorstudie (vgl. Anhänge 12.1 bis 12.5) ausgewertet.

→ Dieser Abschnitt wird ergänzt, sobald die noch fehlende Stellungnahme der Gemeinde Eglisau eingegangen ist.
4. Lösungsansätze für kurzfristig realisierbare Verbesserungen

In diesem Kapitel werden die Möglichkeiten untersucht, wie die wichtigsten, heutigen Engpässe auf der H4 beseitigt oder zumindest entschärft werden können und es wird die verkehrstechnische Wirksamkeit der empfohlenen Verbesserungen beurteilt (Auftragsteile A4 und A5).

Im Vordergrund steht dabei die kurzfristige Realisierbarkeit der Massnahmen bei einem beschränkten Realisierungsaufwand. Dabei werden alle Massnahmen primär auf das Ziel ausgerichtet, durch entsprechende Verbesserungen die Reisezeiten zwischen den Räumen Schaffhausen und Bülach-Nord in den Spitzenzeiten gegenüber heute zu verkürzen. Massnahmen zur Entlastung der Ortsdurchfahrten mittels Umfahrungen können erst mittel- bis langfristig realisiert werden und werden in den Kapiteln 5 und 0 behandelt.

4.1 Vorhandene Lösungsansätze

Weitere, bereits vorhandene Lösungsansätze in diesem Streckenabschnitt sind uns nicht bekannt.

4.1.1 Anpassung des Grosskreisels in einen zweistreifigen Kreisel

Die zweite bauliche Anpassung betrifft die Kreisfahrbahn. Der dort nachträglich angebrachte Innenring um die Mittelinsel, mit dem die ursprünglich zweistreifige Fahrbahnbreite eingeengt wurde, müsste wieder entfernt werden.

Diese Umgestaltung liess sich mit einem beschränkten Aufwand (weniger als 1.0 Mio. CHF) und innerhalb von wenigen Monaten realisieren. Die Wirksamkeit dieser Massnahme wird in 4.1.2 geprüft und beurteilt.

4.1.2 Leistungsnachweis für den zweistreifigen Kreisel

- Leistungsfähigkeit der Kreiseleinfahrten

Aufgrund dieser Ausgangsposition wurden Leistungsberechnungen mit dem analytischen Modell KREISEL (aktuelle Version 7.1.5) durchgeführt (vgl. Anhang 6.1). In diesem Programmpaket sind verschiedene Berechnungsmethoden enthalten. Für vorliegende Zwecke geeignet ist das neueste Deutsche Verfahren nach Brilon / Wu (2008), weil es auf Erhebungen an Kreisen mit Durchmessern von bis zu 100 m basiert. Dadurch können die Verhältnisse am Grosskreisel Bülach (Durchmesser 80 m) am besten angenähert werden.

16 Betriebsform 2/2 bedeutet zweistreifige Einfahrten und zweistreifige Kreisfahrbahn. Demgegenüber ist bei der Betriebsform 2/1+ die Kreisfahrbahn überbreit, aber nicht zweistreifig markiert.
Bei der kürzlich abgeschlossenen Forschungsarbeit für zweistreifige Kreisel der Schweiz ([10]) konnten nur Kreisel mit einem Aussendurchmesser zwischen 34 und 60 m berücksichtigt werden. Darin zeigt sich, dass die Leistungsfähigkeit der Einfahrten bei der Betriebsform 2/2 vergleichbar gross ist wie bei der Betriebsform 2/1+. Aus diesem Grund wurde zu Vergleichszwecken auch die, im Programmpaket KREISEL implementierte Methode nach Schweizernorm SN 640024a für die Betriebsform 2/1+ in die Berechnungen einbezogen. Dabei ist zu beachten, dass diese Methode nur für Kreisel mit Durchmesser bis ca. 45 m anwendbar ist.

Die Berechnungen im Anhang 6.1 ergaben nach der massgebenden Methode für die Betriebsform 2/2 sowohl in der Abend- als auch in der Morgenspitze Leistungsreserven in den Kreiseleinfahrten. Die im Zustand 2010 erhobenen Verkehrsbelastungen könnten somit nach der Umgestaltung zu einem zweistreifigen Grosskreisel verarbeitet werden. Aus Tabelle 9 ist ersichtlich, dass auch bei der Berechnung für die Betriebsform 2/1+ (nach SN 640 024a [9]) Leistungsreserven resultieren, sie sind jedoch etwas kleiner.

<table>
<thead>
<tr>
<th>Kreiseleinfahrt</th>
<th>Leistungsreserven PWE/h</th>
<th>Leistungsreserven PWE/h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Betriebsform 2/2</td>
<td>Betriebsform 2/1+</td>
</tr>
<tr>
<td>Glattfelden</td>
<td>538</td>
<td>454</td>
</tr>
<tr>
<td>Hardwald</td>
<td>264</td>
<td>69</td>
</tr>
<tr>
<td>Wagenbreche</td>
<td>158</td>
<td>151</td>
</tr>
<tr>
<td>Eglisau</td>
<td>360</td>
<td>269</td>
</tr>
</tbody>
</table>

Tabelle 9: Leistungsreserven in den Kreiseleinfahrten

- Leistungsfähigkeit der Kreiselausfahrten

Grundsätzlich ist festzuhalten, dass bei Kreiseln Behinderungen in den Einfahrten und nicht in den Ausfahrten entstehen. Verkehrsmengen, die an den Einfahrten verarbeitet werden, können in der Regel auch in den Ausfahrten abfliessen. Vorausgesetzt hierfür ist, dass stromabwärts (nach der Ausfahrt aus dem Grosskreisel) kein Engpass vorhanden ist. Das ist hier der Fall: Die Ausfahrt erfolgt auf eine offene, einstreifige Strecke (durch Hardwald) an deren Ende (Autobahnbeginn) eine Aufweitung auf zwei Fahrstreif-

Die Ausfahrtsbelastung von knapp 1'500 PWE/h ist zwar beträchtlich, allerdings haben die in den Kreiselausfahrten erstmalig durchgeführten, empirischen Messungen ([10]) gezeigt, dass die Kapazität einstreifiger Ausfahrten ca. 1'700 Fz/h beträgt und diese mit einer zweistreifiger Ausfahrt auf ca. 1'850 Fz/h erhöht werden kann. Die 1'700 Fz/h entsprechen hier ca. 1'785 PWE/h. Dementsprechend ergab sich in der Ausfahrt Hardwald noch eine Leistungsreserve von ca. 285 PWE/h.

- Leistungsfähigkeit der H4 im Hardwald

Im Bemessungsfall des zweistreifigen Grosskreisels wurden während der Morgenspitze in der Richtung nach Süden ca. 1'500 PWE/h und nach Norden ca. 530 PWE/h gezählt, pro Querschnitt also 2'030 PWE/h. Dies entspricht einer Menge von ca. 1'920 Fz/h. Gegenüber der Kapazitätsgrenze besteht hier somit noch eine Reserve von ca. 580 Fz/h.

4.1.3 Anpassung des Grosskreisels zu einem Turbinenkreisel

Abbildung 5: Beispiel eines Turbinenkreisels mit baulich abgetrennten Linksabbiegestreifen

17 Die bestehende Norm SN 640024a wird an die Ergebnisse der Forschungsarbeit [10] angepasst; die Normrevision wird gegenwärtig eingeleitet.
18 Die Umrechnung von Fahrzeugen (Fz) auf Personenwageneinheiten (PWE) basiert auf Angaben über die Anteile von Last- und Liefervon in [1]. Daraus ergibt sich ein Umrechnungsfaktor 1 Fz = 1.05 PWE.
19 In der Abendspitze (in [1] gezählt ca.1'970 Fz/h) ergibt sich eine Reserve von ca. 550 Fz/h.

\begin{figure}
\centering
\includegraphics[width=\textwidth]{Abb6.png}
\caption{Vorschlag einer Umgestaltung in einen Turbinenkreisel aus [1] (links) und ein modifizierter Vorschlag (rechts)}
\end{figure}

\subsection*{4.1.4 Leistungsnachweis für Turbinenkreisel}

Bei den Berechnungen wurden hinsichtlich der Aufteilung des Verkehrs in den zweistreifigen Einfahrten (Eglisau und Hardwald) zwei Varianten geprüft:

- Bei erster Variante wird der Anteil des Verkehrs auf dem rechten Fahrstreifen mit 60\% angenommen,
- bei zweiter Variante wird der Anteil des Verkehrs auf dem rechten Fahrstreifen mit 40\% angenommen.

Die zweite Variante ist insofern realistischer, als davon ausgegangen werden muss, dass die Fahrzeuge wegen der Einfädelung nach links in den Ausfahrten nach Hardwald und nach Eglisau mehrheitlich den linken Fahrstreifen in den Einfahrten von Eglisau und von Hardwald benutzen werden.

20 Diese Modifikation kann in den Berechnungen in 4.1.4 nicht berücksichtigt werden.
• Ergebnisse für die Abendspitze

Die Berechnungen für den stärker belasteten Zustand der Abendspitze (Zufahrtssumme 3'190 PWE/h) und bei einem Anteil des Verkehrs auf dem rechten Fahrstreifen von 60% zeigen sowohl nach deutschem als auch nach niederländischem Verfahren in einer der Kreiseleinfahrten eine ungenügende Leistung (Qualitätsstufe F). Nach deutschem Verfahren wäre die einstreifige Einfahrt Wagenbreche, nach niederländischem Verfahren die zweistreifige Einfahrt Hardwald überlastet. In der Einfahrt Hardwald werden die mittleren Wartezeiten pro Fahrzeug mit über 6 Min. angegeben, jene in der Einfahrt Wagenbreche wären um ein vielfaches größer.

Die gleichen Einfahrten sind auch bei einem Anteil des Verkehrs auf dem rechten Fahrstreifen von 40% betroffen, allerdings wären die Leistungsdefizite in diesen Einfahrten nach deutschem Verfahren etwas kleiner, während sich nach niederländischem Verfahren keine Veränderung ergab.

• Ergebnisse für die Morgenspitze

In der Morgenspitze wird die Kreiselanlage weniger stark belastet (Zufahrtssumme 2'609 PWE/h). Nach deutschem Verfahren wäre die einstreifige Einfahrt Glattfelden überlastet (Qualitätsstufe F), wobei das Leistungsdefizit bei einem Anteil des Verkehrs auf dem rechten Fahrstreifen von 40% wiederum etwas kleiner als bei einem Anteil von 60% angegeben wird. Diese Überlastung ließe sich mit Anordnung eines zweiten Einfahrtsstreifens weitgehend beseitigen.

Nach niederländischem Verfahren resultieren in der Morgenspitze in keiner der Einfahrten Überlastungen, die schlechteste Bewertung wird mit Qualitätsstufe C angegeben.

Zusammenfassend ist festzustellen, dass in der massgebenden Spitzenzeit (Abendspitze) die Kapazität des Turbinenkreisels nicht ausreichend wäre. Da zudem der Realisierungsaufwand für die Umgestaltung deutlich grösser wäre als jener für den zweistreifigen Grosskreisel (vgl. 4.1.1), wird als kurzfristig realisierbare Verbesserung die Einrichtung des zweistreifigen Kreisels gemäss Abbildung 3 empfohlen.

4.2 Neue Verbesserungsmöglichkeiten

In diesem Abschnitt werden neue Verbesserungsmöglichkeiten, die kurz- bis mittelfristig realisiert werden könnten, geprüft (Auftragsteil A5). Sie umfassen Verbesserungen im Bereich der Grosskreisels Bülach sowie jene im Bereich der Ortsdurchfahrten von Eglisau und Neuhausen am Rheinfall.

4.2.1 Verbesserungen im Bereich der Grosskreisels Bülach

Die in 4.1.2 durchgeführten Leistungsberechnungen für den Grosskreisel Bülach haben gezeigt, dass dieser für die gesamte Strecke zentrale Engpass mit einer kurzfristig realisierbaren Anpassung zu einem zweistreifigen Grosskreisel deutlich entschärft werden kann. Allerdings liegen die dort ausgewiesenen Leistungsresserven in einer Grössenordnung, die gemessen an der gemäss 2.2 zu erwartenden Verkehrsentwicklung in etwa 5 bis 7 Jahren aufgebraucht werden. Aus diesem Grund werden in diesem Abschnitt noch weitere Verbesserungsvorschläge geprüft.

• Zusätzlicher Stauraum zwischen Eglisau und Grosskreisel

Ob dieser Ausbau bereits ab Ortausgang (auf eine Länge von ca. 1.75 km), oder nur auf der zweiten Streckenhälfte erforderlich wäre, müsste dann noch näher geprüft werden. Die Kosten für Bauarbeiten des zusätzlichen, 1.75 km langen Fahrstreifens werden auf ca. 4.5 Mio. CHF (Preisbasis 2003) geschätzt.^[21]

^[21] Inklusive Strassenausrüstung, Projektierung und Bauleitung sowie Unvorhergesehenes, aber exklusive Landerverwerb sowie Kosten für die Neuordnung der Lokalerschliessung, Anpassungsarbeiten und Inkonvenienzentschädigungen.
Diese Ausbaumassnahme hat jedoch den Nachteil, dass sie das eigentliche Problem (Engpass am Großkreisel) nicht löst. Die Rückstaubildung bis in den Innerortsbereich von Eglisau wird zwar verhindert, die Wartezeiten bleiben jedoch unverändert, was der angestrebten Reisezeitverkürzung widerspricht. Zudem wird mit dieser Massnahme allein die Staubildung im Hardwald während der Abendspitze (Fahrtrichtung Süd-Nord) nicht beseitigt.

- **Additionsstreifen im Großkreisel**

Aus verkehrstechnischer Sicht wären solche leistungsteigernde Additionsstreifen für die Verkehrsbeziehungen zwischen Einfahrt Glattfelden und Ausfahrt Hardwald und zwischen Einfahrt Hardwald und Ausfahrt Eglisau zu prüfen.

- **Additionsstreifen von Glattfelden nach Hardwald**

Da sich am Kreiselerand zwischen der Ein- und Ausfahrt ein Gebäude befindet muss die Fläche für den Additionsstreifen im Großkreisel geschaffen werden. Die einfachste bzw. günstigste Möglichkeit dazu ist, die erforderliche Fläche im zugehörigen Sektor des Kreisels aus der MittelinSEL auszuschneiden (vgl. Skizze in Abbildung 7).

Abbildung 7: Anpassung der Kreiselmittelinsel

22 Ein bereits ausgeführtes Beispiel des Kreisels mit Additionsstreifen befindet sich am Nordrand von Eglisau.
Abbildung 8: Kreiselanpassung mit Additionsstreifen von Glattfelden nach Hardwald

- **Additionsstreifen von Glattfelden nach Hardwald und von Hardwald nach Eglisau**
Analog zum obigen Vorschlag ist in Abbildung 9 die Kreiselanpassung mit einem zweiten Additionsstreifen für Fahrzeuge aus Hardwald in Richtung Eglisau dargestellt. Bei dieser Lösung wird die Fläche für die zwei zusätzlichen Fahrstreifen zentrisch aus der Mittelinsel ausgeschnitten. Der Additionsstreifen für die Beziehung von Hardwald nach Eglisau wird nur mit einer überfahrbaren Leitlinie markiert, damit diese durch die aus- und einfahrenden Fahrzeuge in bzw. aus Richtung Wagenbreche gequert werden kann.

Analog zum vorherigen Vorschlag setzt eine weitere Leistungssteigerung in der Kreiselausfahrt in den Hardwald ein Ausbau im Hardwald auf zwei Fahrstreifen in Richtung Süd voraus.
Unterfahrung des Grosskreisels

Bei der in Abbildung 10 skizzierten Lösung würde der Grosskreisel um ca. 45% (Morgenspitze) bis 60% (Abendspitze) entlastet. Dabei könnte der heutige Kreiseldurchmesser (80 m) deutlich verringert werden. Dadurch ergäbe sich eine entsprechend verkürzte Länge der Unterführung.

Mit dieser Lösung wäre die Gefahr der Rückstaubildung in die Richtungen Eglisau (Morgenspitze) und Hardwald (Abendspitze) ebenfalls beseitigt. Allerdings ist diese relativ aufwendige Variante nur sinnvoll, um weitere Mehrbelastung auf der Ortsdurchfahrt zu vermeiden.

²³ Wie weit bei dieser Folgerung in [1] die seit Jahrzehnten diskutierte Fortsetzung der A50 und ihre Verbindung mit der deutschen A98 in Südbaden berücksichtigt wurde, ist uns nicht bekannt.
Ausbau der H4 im Hardwald

Wie aus den oben erwähnten Vorschlägen ersichtlich, ist in der Kreiselausfahrt nach Hardwald ein Fahrstreifenabbau erforderlich. Die deshalb notwendigen Einfädelungen schränken hier die Leistungsfähigkeit ein. Dabei ist zu berücksichtigen, dass hier für den Zustand 2030 eine für ein zweistreifigen Querschnitt sehr hohe Verkehrsbelastung von über 36'000 Fz/Tag erwartet wird. Obwohl die Lösungen mit den Additionsfahrstreifen im Grosskreislauf wie auch die zuletzt genannte Unterfahrung des Kreisels eine deutliche Verbesserung des Verkehrsaufkommens bringen können, wird der Ausbau im Hardwald mittelfristig unumgänglich sein. Zur Beseitigung der Leistung hemmenden Einfädelungen steht die Erstellung eines zweiten Fahrstreifens in Fahrtrichtung Süd im Vordergrund.\(^{24}\)

Der mittelfristig zu realisierende Ausbau der Strecke auf drei Fahrstreifen ist angesichts der umweltschutzbedingten Schwierigkeiten im Hardwald nur dann sinnvoll, wenn es gelingt, die Verbreiterung innerhalb des bestehenden Strassenraumes, also ohne Beanspruchung des Waldes umzusetzen. Auf Basis der in [1] ange-
gegebenen Querschnittsbreite von 13.50 m (vgl. Abbildung 11) sollte dies möglich sein. Das setzt jedoch voraus, dass auf der Strecke ein Überholverbot für Lastwagen signalisiert wird.

Der Vorschlag für dreistreifige Fahrbahn in Abbildung 11 basiert auf Abmessungen der Elemente des Querschnittes gemäss GNP-Norm [15] wie folgt:

- **Fahrbahn mit Überholverbot für Lastwagen und mit Tempolimit 80 km/h**
 - **Fahrstreifen südwestlich, rechts**
 Massgebender Fahrzeug LW, massgebende Geschwindigkeit 70 km/h
 Grundabmessung = 2.50 m, Bewegungsspielraum 2 x 0.20 m, Sicherheitszuschläge 2 x 0.30 m → total 3.50 m.
 - **Fahrstreifen südwestlich, links (Überholfahrstreifen)**
 Massgebender Fahrzeug PW (Überholverbot für Lastwagen), massgebende Geschwindigkeit 80 km/h
 Grundabmessung = 1.80 m, Bewegungsspielraum 2 x 0.30 m, Sicherheitszuschläge 2 x 0.20 m, Überholzuschlag 0.30 m → total 3.10 m.
 - **Fahrstreifen nordwestlich**
 Massgebender Fahrzeug LW, massgebende Geschwindigkeit 70 km/h
 Grundabmessung = 2.50 m, Bewegungsspielraum 2 x 0.20 m, Sicherheitszuschlag auf der Innen- seite 0.30 m (Sicherheitszuschlag auf der Außenseite wird im Trennstreifen ausgewiesen), Gegenverkehrs- zuschlag 0.30 m → total 3.50 m.

Zur Trennung der Fahrtrichtungen wird die doppelte Sicherheitslinie empfohlen.

- **Radweg im Gegenverkehr mit**
 2 x 0.8 m für Grundabmessungen (0.60 m) und Bewegungsspielraum (2 x 0.10 m), 2 x 0.20 m für innere Sicherheitszuschläge (äußere Zuschläge ausserhalb des Radweges) und 0.20 m für Gegenverkehrszuschlag (Geschwindigkeit 30 – 50 km/h) → total 2.20 m
- **Trennstreifen auf 0.70 m reduziert (statt 1.20 m)**
- **Bankett neben Fahrbahn auf 0.50 m reduziert**
- **Bankett neben Radweg entfällt, bzw. durch den Radweg beansprucht.**

Abbildung 11: Anpassungen im bestehenden Strassenraum der H4 im Hardwald

Die Kosten für Bauarbeiten an diesem ca. 2.3 km langen Abschnitt werden auf ca. 7.9 Mio. CHF (Preisbasis 2003) geschätzt (vgl. auch Fussnote 19).
4.2.2 Verbesserungen in der Durchfahrt Eglisau

Wie in 2.1.2 ausgeführt, weist die Ortsdurchfahrt mit über 20 000 Fz/Tag und in den werktäglichen Stosszei-
ten mit bis zu 17 800 Fz/h eine Verkehrsbelastung auf, die bereits heute an der Kapazitätsgrenze für Stre-
ckenabschnitte von zweistreifigen Strassen innerorts liegt. Zudem wird die zukünftige Verkehrszunahme zu
einer weiteren Verschärfung der Situation auf der Ortsdurchfahrt führen. Die negativen Auswirkungen des
Straßenverkehrs lassen sich hier nur durch den Bau einer Ortsumfahrung umfassend beseitigen. Im Fol-
genden soll untersucht werden, wie weit eine gewisse Entspannung der Verkehrssituation in den Stosszei-
ten und eine Verbesserung der Verkehrssicherheit durch rasch realisierbare Massnahmen erreicht werden
kann. Im Vordergrund stehen die Verbesserung der Überquerbarkeit der H4 für Fussgänger sowie des Ein-
mündens von Fahrzeugen aus den Quartierstrassen.

Wie in 4.1.2 ermittelt, wird durch die Sofortmassnahme „zweistreifiger Kreisel“ der Rückstau vom Grosskrei-
sel Bülach bis nach Eglisau in der Morgenspitze zwar beseitigt, auf die gezählten Verkehrsmengen (gemäss
Abbildung 4 ca. 1'000 PWE/h in Richtung Süd und ca. 510 PWE/h in Richtung Nord) hat dies jedoch keinen
Einfluss. Die Auswirkung der Verbesserung am Grosskreisel Bülach wird sich in einer besseren Verkehrsqua-
lität manifestieren: Statt wie heute (mit Stau) wird sich die mittlere Reisegeschwindigkeit in der Morgen-
spitze von ca. 13–15 km/h (vgl. Tabelle 1) auf ca. 35 km/h (wie heute in den Zwischenzeiten) erhöhen.

Die heutigen stündlichen Verkehrsbelastungen in den Stosszeiten (pro Querschnitt ca. 1'600 PWE/h in der
Morgenspitze und gar ca. 2'010 PWE/h in der Abendspitze) sind für eine zweistreifige Strasse beträchtlich.
Wie bereits in 1.3 angesprochen, könnte der Verkehr auf der H4 bei den Ortseingängen mittels Lichtsignalan-
lagen (LSA) so dosiert werden, dass im Verkehrsfluß grössere Zeilücken zwischen den Fahrzeugpulks ent-
stehen. Durch die Zerstückelung des heute in den Stosszeiten kontinuierlichen Verkehrsstroms werden die
Überquerbarkeit für Fussgänger die Ein- / Abbiegevorgänge von Fahrzeugen aus bzw. in die Quartierstras-
sen erleichtert. Durch diese Massnahme werden die Verkehrsmengen nicht reduziert, sondern die Qualität
für den durchfahrenden Verkehr verschlechtert (Wartezeiten vor LSA und damit verlängerte Reisezeiten).

Um diese Auswirkung möglichst gering zu halten, müssten die Umlaufzeiten der LSA möglichst klein einge-
stellt werden. Bei einer Umlaufzeit von beispielsweise 60 s und bei einer Grünzeit für den Hauptstrom von
35 s (entspricht einem Fahrzeugpulk von ca. 18 Fz) ergeben sich gemäss Norm SN 640 023a [12] bei einer
Fahrstreifenbelastung von 1'000 PWE/h (Morgenspitze in Richtung Süd) eine mittlere Wartezeit von ca. 35 s
pro Fahrzeug und ein Rückstau von im Mittel ca. 10 PWE, maximal ca. 17 PWE. Dies entspricht einer Rück-
staulänge von ca. 60 bis 110 m.

Durch diese Massnahme werden im Verkehrstrom auf der Ortsdurchfahrt Lücken von ca. 25 s gebildet, die
für das Queren der Fahrbahn ausgenützt werden können. Dabei wird die LSA nur in der Stosszeit im Betrieb
genommen. Als mögliche Standorte kommen in Eglisau in Frage (vgl. Abbildung 12):

- Im Norden (für den Zustand Morgenspitze) die nördliche Kreiselzufahrt oder der ca. 120 m südlich des
 Kreisels gelegene Knoten Schaffhauserstrasse / Bauleenzelgstrasse. Die Anordnung vor dem Kreisel
 hat den Nachteil, dass der rechtsabbiegende Verkehr nach Hüntwangen behindert wäre. Die zweite
 Möglichkeit ist insofern denkbar, als der voraussichtliche Rückstau vor der LSA den Betrieb am Kreisel
 nicht behindern wird.26
- Im Süden (für den Zustand Abendspitze) die Einmündung der Roggentalstrasse in die Zürcherstrasse.

Im realen Verkehrsablauf zerfallen die durch LSA gebildeten Fahrzeugpulks nach einer gewissen Fahrdis-
tanz. Erfahrungsgemäß ist dies nach ca. 500 m der Fall. Da die beiden Ortseinfahrten ca. 1.6 km von einan-
der entfernt sind, wäre allenfalls im Bereich der Rheinbrücke eine zusätzliche LSA angezeigt.

25 Wie in 2.3.1 angegeben, ist das Sicherheitsniveau im Innerortsabschnitt von Eglisau sehr schlecht: Die Unfall- und Vernunfallenraten
liegen deutlich über dem Schweizerischen Durchschnitt für diese Strassenkategorie.

26 Hierzu könnte auch ein Belegungsdetektor nach der Kreiselausfahrt die Steuerung der LSA bei Bedarf beeinflussen.
4.2.3 Verbesserungen in der Einfahrt Neuhausen am Rheinfall

Wie aus Tabelle 4 ersichtlich, liegen die Verkehrsbelastungen (DWV) in der Einfahrt von Neuhausen heute zwischen ca. 10'050 und 13'570 Fz/h, also deutlich niedriger als in Eglisau. Ebenso sind die in 2.1.2 ermittelten Reisezeitverluste auf diesem H4-Abschnitt nur geringfügig (vgl. Tabelle 1). Mit der erwarteten Verkehrszunahme bis zum Zustand 2030 werden sich diese Mengen auf über 15'000 erhöhen, wobei der dann im Betrieb stehende Galgenbuckttunnel gemäss den vorliegenden Modellberechnungen sowie jenen in [7] nur eine unwesentliche Entlastung auf der Zollstrasse bewirkt (vgl. 2.2.2).

Nach unserer Auffassung sollte mit der Umsetzung dieser Massnahme bis zur Eröffnung des Galgenbucktunnels zugewartet werden. Erst danach wird sich zeigen, wie weit sich die prognostizierten Verkehrsverlagerungen tatsächlich auch eingestellt haben.

4.3 Folgerungen zu den kurzfristig realisierbaren Verbesserungen

In diesem Abschnitt werden die in Kapitel 4 untersuchten Verbesserungsmassnahmen aufgrund ihrer verkehrstechnischen Wirksamkeit und ihrer Realisierbarkeit zur zeitlichen Umsetzung empfohlen (vgl. Auftragsteil A5). Die nachfolgend angegebenen Zeitangaben berücksichtigen lediglich die verkehrstechnische Funktionsstüchtigkeit der empfohlenen Lösungen. Ihre Realisierung kann auch zeitlich vorgezogen werden.

- **Zustand 1: ab 2010 + ca. 5 Jahre**
 Grosskreisel 2/2

 In einem ersten Schritt wird – im Sinne einer Sofortmassnahme – die Umrüstung des Grosskreisels Bülach zu einer Kreiselanlagen mit zweistreifiger Kreisfahrbahn und mit zweistreifigen Einfahrten gemäss 4.1.1 empfohlen. Gemäss Berechnungen sollten die in Tabelle 9 ausgewiesenen Leistungsreserven für die nächsten ca. 5 bis 7 Jahre soweit ausreichen, dass grössere Rückstaus in den Spitzenzeiten ausbleiben. Diese Massnahme lässt sich mit einem beschränkten Aufwand (Schätzung für Bauarbeiten ca. 0.75 Mio. CHF) in kurzer Zeit realisieren.

 Die alternative Lösung mittels Turbinenkreisel wird wegen teilweise mangelnder Leistung und deutlich grösserem baulichen Aufwand nicht zur Realisierung empfohlen.

 Parallel kann die LSA-Dosierung in Eglisau umgesetzt werden, wobei in einem ersten Schritt nur jene für die Fahrtrichtung Süd-Nord (Einsatz in der Abendspitze) sinnvoll ist.

- **Zustand 2: ab Zustand 1 + ca. 5 Jahre**
 Grosskreisel 2/2 mit Additionsfahrstreifen

 Im zweiten Schritt ist zur weiteren Leistungssteigerung am Grosskreisel Bülach die Lösung mit den Additionsfahrstreifen zu realisieren. Dabei ist die Lösung gemäss Abbildung 9, mit zentrisch verkleinerter Mitteleinzel- und mit einstreifiger Ausfahrt nach Eglisau umzusetzen. So lange der zusätzliche Fahrstreifen im Hardwald in Fahrtrichtung Süd nicht realisiert ist, wird in der Kreiselauf- und auf Hardwald ein Einfädelungsbereich notwendig. Für die Erstellung des zusätzlichen Fahrstreifens in der Kreismittelinsel sowie des Einfädelungsbereichs in der Ausfahrt Hardwald ist mit Kosten von ca. 2.0 Mio. CHF zu rechnen.

 Auf die bauliche Erstellung des zusätzlichen Staumaxxions bzw. des Überholfahrstreifens zwischen Eglisau und Grosskreisel Bülach ist in diesem Zustand zu Gunsten der Additionsfahrstreifen im Grosskreisel zu verzichten.

 Zur Verbesserung der Verkehrssituation in der Ortsdurchfahrt Eglisau kann die LSA-Dosierung für die Fahrtrichtung Nord-Süd (Einsatz in der Morgen- und Mittagspitze) umgesetzt werden 27.

 Da in diesem Zustand auch der Galgenbucktunnel in Neuhausen vor- aussichtlich im Betrieb sein wird, könnte die Umsetzung der LSA-Dosierung für den über die Zollstrasse einfahrenden Verkehr erwogen werden (vgl. Abbildung 13).

27 Diese Empfehlung wäre hinfällig, wenn in oder kurz nach diesem Zustand die Umfahrung Eglisau realisiert sein sollte.
Zustand 3: ab Zustand 1 + ca. 10 Jahre

Grosskreisel 2/2 mit Additionsfahrstreifen und Ausbau Hardwald

Die Massnahmen in den Zuständen 2 und 3 können auch gleichzeitig bzw. gestaffelt umgesetzt werden.

Zustand 4: ab ca. 2025

Unterfahrung und Rückbau des Grosskreisels

Im Hinblick auf die Verkehrszunahme bis 2030 und die auch längerfristig dominierende Nord-Süd-Ausrichtung des Verkehrs wird zur Entlastung des Grosskreisels eine Unterfahrung empfohlen. Sie soll auf Basis des verkleinerten Kreisel-Innendurchmessers gemäss Zustand 2 und 3 erfolgen, die restlichen Flächen im Kreiselaussenbereich können rückgebaut werden.

Mit der Unterfahrung des Grosskreisels wird die Gefahr der Rückstaubildung in die Richtungen Eglisau (Morgenspitze) und Hardwald (Abendspitze) auch längerfristig beseitigt. Unseres Erachtens ist diese aufwendige Lösung nur zusammen mit der Erstellung der Umfahrung Eglisau sinnvoll.

Sollten die Verkehrsprognosen zutreffen, erreichen die Verkehrs mengen in Hardwald im Zustand 2030 mit über 36'000 Fz/Tag (DWV) eine Größe, die mittel- bis langfristig eine vierstreifige Führung der H4 im Hardwald erforderlich macht. Für diesen Zustand steht ein Querschnitt einer „Miniautobahn“, wie er auch in der Planungsstudie ZH [1] empfohlen wurde, im Vordergrund.
5. Umfahrungen Eglisau und Jestetten

Gemäss Auftragsteil B (vgl. 1.2) wird in diesem Kapitel untersucht „wie die beiden Hauptprobleme Eglisau und Jestetten allenfalls rascher einer Machbarkeit zugeführt werden können“. Für die Umfahrungen dieser zwei Gemeinden stehen dabei möglichst kostengünstige Varianten im Vordergrund.

Im Falle von Eglisau bildet der Richtplaneintrag, der auf der sogenannten Variante Landolt basiert, die Ausgangslage. In einem Bericht der Firma Landolt AG, Eglisau aus dem Jahre 2008 [14] werden die Kosten für die Realisierung der Umfahrung auf ca. 250 Mio. CHF geschätzt. Das Amt für Verkehr des Kantons Zürich beziffert inzwischen die Kosten für diese Variante auf ca. 300 Mio. CHF.

5.1 Umfahrung Eglisau

5.1.1 Ausgangslage

Aus den uns zugänglichen Unterlagen ist ersichtlich, dass die wichtigsten Konfliktpunkte des Richtplaneintrags folgende Schutzinteressen betreffen:

- Lärmschutz (im Bereich der Rheinquerung)
- Landschaftsschutz (Tangieren des geschützten Rheinufers, BLN-Objekt Nr. 1411)
- Naturschutz (Tangieren überkommunaler Naturschutzgebiete bei einem allfälligen Ausbau der bestehenden Strasse im Bereich Lindrain)
- Ortsbildschutz (Landschaftsbild im Bereich der Rheinquerung)
- Gewässerschutz (Tangieren des Grundwasserschutzareals durch Anschlussbauwerk Nord).

Bei diesen Konflikten handelt es sich um verkehrspolitische bzw. –rechtliche Aspekte, deren Ausmarchung auch ein Abwägen von nationalen Interessen bedarf. Für diese Aspekte sind wir weder zuständig, noch fachkompetent. Im Rahmen dieser Vorstudie können deshalb diesbezüglich keine Empfehlungen abgegeben werden.

Ein wesentliches Hindernis für die Realisierung der Umfahrung Eglisau sind die relativ hohen Baukosten. Aus diesem Grund wird im Folgenden versucht, eine kostengünstigere Lösung zu suchen, die eine raschere Umsetzung ermöglichte würde.

5.1.2 Rahmenbedingungen für die Umfahrung

- Zielsetzung
 Die Hauptzielsetzung für den Entwurf ist eine Umfahrungsvariante, die gegenüber dem Richtplaneintrag kostengünstiger ist und die die in 5.1.1 erwähnten Schutzinteressen möglichst berücksichtigt.
Vorstudie Strassenverbindung Neuhausen – Jestetten – Eglisau – Bülach

• Lage der Rheinbrücke

 Bedingt durch die Tieflage der Brücke muss die anschliessende Höhenangleichung auf der Nord- und Südseite der Rheinbrücke mittels Tunneln unterirdisch erfolgen. Da diese den dominierenden Kosten- teil darstellen, ist beim Entwurf ihre Verkürzung anzustreben.

• Ausbaugrad und Anschlusspunkte der Umfahrung
 Im Richtplan ist für die Umfahrung der Strassentyp Hauptverkehrsstrasse (HVS) vorgesehen. Der Ausbaugrad der Variante Landolt ist jedoch auf eine Autostrasse (Hochleistungsstrasse ohne bauliche Richtungstrennung) ausgelegt. Dies manifestiert sich unter anderem
 - in grossen Kurvenradien, die auf eine Ausbaugeschwindigkeit von 100 km/h ausgelegt sind (Mindestradius = 500 m), während für HVS ausserorts gemäss SN 640 042 [16] ein Bereich von 60 – 80 km/h vorgegeben ist
 - in kreuzungsfreien Anschlüssen an beiden Umfahrungsenden, die gemäss [16] für HVS nicht erforderlich sind und
 - im Strassenquerschnitt, der neben der Fahrbahn auch Standstreifen enthält, die gemäss [16] für HVS nicht vorzusehen sind.

 Für den neuen Entwurf einer HVS wurde deshalb von folgenden Projektierungsvorgaben ausgegangen:
 - Ausbaugeschwindigkeit von 70 km/h (Mindestradius der Kurven = 175 m); hierbei werden die erschwerten topographischen Verhältnisse berücksichtigt
 - zweistreifiger Querschnitt ohne Standstreifen, mit Fahrbahnbreite von 7.50 m
 - Vertikale Linienführung so ausgelegt, dass nach SN 640138b [17] keine Zusatzstreifen in Steigungen erforderlich sind
 - Ausbildung der Knotenpunkte in einer Ebene.

• Übergangslösungen
 Der nördliche Anschluss der Umfahrung erfolgt provisorisch am bestehenden Kreisel Eglisau (vierter Kreiselarm); die Anpassung der Eglisauerstrasse erfolgt mittels einer T-förmigen Einmündung (vgl. folgende Skizze links). Bei einem allfälligen, späteren Ausbau (Skizze rechts) wäre ebenfalls eine Kreisellösung angezeigt. Da hier kein kreuzungsfreier Anschluss (wie bei „Variante Landolt“) erstellt wird, entfällt dadurch der in 5.1.1 erwähnte Konflikt mit dem Grundwasserschutzareal.

 Der südliche Anschluss der Umfahrung an die bestehende Zürcher-Strasse erfolgt mittels einer T-förmigen Einmündung im Bereich von Ifang (zwischen der Roggenfar- und Sandgruebstrasse).

28 Der heutige Kreisel und der nördliche Kreiselarm der Schaffhauser-Strasse wären dann aufzuheben.
Für die Realisierung der Umfahrung wird vorausgesetzt, dass die Verbesserungsmassnahmen am Grosskreisel Bülach sowie im Hardwald mindestens gemäss Zustand 3 (vgl. 4.3) umgesetzt sind (kein Rückstau in den Tunnelbereich).

5.1.3 Entwicklung der Linienführung

Wie bereits erwähnt, steht für den neuen Entwurf die Verkürzung der beiden Tunnelbauwerke, die den dominierenden Kostenanteil der Umfahrung Eglisau darstellen im Vordergrund. Das Niveau der dem Rhein zugewandten Portale ist durch die Position der Rheinbrücke gegeben (vgl. 5.1.2).

Eine Verkürzung des Tunnels auf der Nordseite der Rheinquerung zwischen dem Niveau der Rheinbrücke (ca. 355 m ü.M.) und jenem des bestehenden Kreisels (ca. 393 m ü.M.) ist unter Einhaltung der maximal zulässigen Längsneigung nicht möglich. Das nördliche Portal muss – wie bei der Variante Landolt - bei der Bauelenzelg-Str. zu liegen kommen.

Soweit aus den Unterlagen ersichtlich, beträgt die Länge des südlichen Tunnels in der Variante Landolt (vgl. Anhang 7) zwischen dem südlichen Rheinufer und dem Anschlussbauwerk Süd (Tössriederstrasse) ca. 1.65 km. Für eine Verkürzung des Tunnel südlich der Rheinquerung besteht nur die Möglichkeit, den Altenhau-Hügel südlich des Bahnhofs Eglisau in östlicher Richtung zu umgehen und die Umfahrung entlang der Bahnlinie zu führen (vgl. folgende Skizze links). Um die bautechnischen Probleme dieses Rutschhangs zu reduzieren, muss die Linienführung in diesem Bereich mit grosser Wahrscheinlichkeit unterirdisch erfolgen.

Eine Umgehung mittels einer Wendeschleife unter der bestehenden SBB-Brücke (vgl. Skizze rechts) wäre zwar denkbar, würde aber die Tunnellänge vergrössern, aufwendige Anpassungsarbeiten im Uferbereich erfordern und einen Umweg bedeuten.

Die Lage des östlichen Tunnelportals ist hier durch das Landschaftsschutzgebiet von nationaler Bedeutung (BLN) vorgegeben. Das Ostportal wird deshalb so festgelegt, dass die BLN-Zone nicht tangiert wird (bei Ostende des Bahnhofs, vgl. Skizze rechts). Eine Verschiebung in westlicher Richtung (und somit eine Tunnelverkürzung) wäre zwar möglich, würde aber im BLN-Bereich aufwendige Hangsicherungs- und Gestaltungsmassnahmen erfordern.

Anschliessend kann die Linienführung oberirdisch entlang der Bahnlinie erfolgen und die Umfahrungsstrasse soll mittels einer Unterführung der Bahnlinie an die bestehende Zürcherstrasse angeschlossen werden.

5.1.4 Beschrieb der Umfahrungsvariante

Aufgrund der Festlegungen und Überlegungen in 5.1.2 und 5.1.3 wurde die nachfolgend beschriebene Variante der Umfahrung Eglisau entworfen. Sie ist im Anhang 8.1 (Situationsplan) bzw. 8.2 (Längenprofil) dargestellt. Zur besseren Nachvollziehbarkeit sind nachfolgend auch die entsprechenden Planausschnitte wiedergegeben.

- **Nördlicher Abschnitt**

 Der provisorische Anschluss an den bestehenden Kreisel Eglisau-Nord (ca. km 2.25) erfolgt über eine Kurve mit Radius von 125 m. Die Reduktion gegenüber dem Mindestradius (175 m) ist insofern gerechtfertigt, als der Knotenzufahrtsbereich mit 60 km/h signalisiert wird. Im Bereich dieser Kurve wird die Eglisauerstrasse als T-Einmündung eingeführt. Hier beginnt eine ca. 500 m lange Gefällsstrecke mit einer Längsneigung von 7.0\%30. In diesem Gefälle befindet sich der nördliche, ca. 310 m lange Tunnel (zwischen ca. km 1.75 und km 2.06). Im Bereich der Parzelle Nr. 2356 und der anschliessenden Rheinbrücke erfolgt die vertikale Ausrundung zwischen den Längsneigungen von 7.0\% (Gefälle) und 5.0\% (Steigung). Der tiefste Punkt (ca. 354 m ü.M.) befindet sich ca. 14 m über dem Wasserspiegel des Rheins. Die horizontale Linienführung des Tunnels und der Rheinquerung folgt in diesem Abschnitt ungefähr jener der Variante Landolt.

- **Südlicher Abschnitt**

 Nach der zum Rhein rechtwinkligen, ca. 185 m langen Rheinbrücke beginnt in der Steigungsstrecke von 5.0\% (vgl. auch Fussnote 30) der südliche, ca. 820 m lange Tunnel (zwischen ca. km 1.50 und km 0.68). Er wird mit einer Kurve mit Radius von 245 m eingeleitet. Nach der Unterquerung der Bahnstrecke

30 Bei 7.0\% Steigung und bei einer Steigungsstrecke von 500m ist die Anordnung eines Zusatzstreifens in Steigungsrichtung nach SN 640 138b [17] nicht erforderlich. Dies trifft auch für die ca. 800 m lange Steigungsstrecke mit 5.0\% zu.
cke verläuft der Tunnel in einer Geraden, an deren Ende sich das östliche Tunnelportal befindet. In diesem Abschnitt sowie in der anschliessenden Kurve mit Radius von 300 m folgt das Trasse jener der Bahn. Nach dem Tunnel befindet sich die vertikale Ausrundung zwischen der Steigungsstrecke (5.0%) und Gefällsstrecke (6.0%). Hier verläuft das Trasse zunächst auf einer bis zu 3.0 m hohen Aufschüttung und ab ca. km 0.46 in einem bis zu 8.0 m tiefen Einschnitt. Hier sind auf einer Länge von ca. 170 m Hangsicherungsmaßnahmen mit Stützmauern erforderlich.

Anschliessend wird das Bahntrassee unterfahren (Länge der Unterführung ca. 80 m) und mit einer leichten Steigung von ca. 3.0% an die bestehende Zürcherstrasse angeschlossen (bei ca. km 0.0). Die herabklassierte Ortsdurchfahrt wird mittels eines T-Knotens bei ca. km 0.15 an die Umfahrungsstrasse angeschlossen, wobei hier eine Lichtsignalanlage vorzusehen wäre.
Die Gesamtlänge der Umfahrung ergibt sich zu ca. 2.25 km. Zum Vergleich war in der Variante Landolt eine Länge von ca. 3.7 km vorgesehen, wobei die Strecke zwischen dem Anschluss Süd (Tössriederenstrasse) und Kreisel Eglisau-Nord eine Länge von ca. 2.5 km resultierte. Durch die gegenüber der Variante Landolt verkürzte Neubaulänge der Umfahrung im Süden entfallen auch die Konflikte mit dem Naturschutz (Tangieren überkommunaler Naturschutzgebiete im Bereich Lindirain).

Die kostenintensiven, unterirdischen Abschnitte der vorliegenden Variante sind insgesamt ca. 1'210 m lang (Tunnel-Nord ca. 310 m, Tunnel-Süd ca. 820 m, die Unterführung ca. 80 m). In der Variante Landolt sind die Tunnelabschnitte mit insgesamt ca. 2'080 m (Tunnel-Nord ca. 450 m, Tunnel-Süd ca. 1'630 m) etwa doppelt so lang vorgesehen.

5.1.5 Kostenschätzung

<table>
<thead>
<tr>
<th>Kostenelement</th>
<th>Bemerkungen</th>
<th>Einheitspreise</th>
<th>Ausmass</th>
<th>max. Total</th>
<th>min. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>offene Strecke Nord</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strassenbau L=195m</td>
<td></td>
<td>535 Fr/E</td>
<td>1'465 m²</td>
<td>783'775 Fr</td>
<td>783'775 Fr</td>
</tr>
<tr>
<td>Anschluss bestehende Strasse L=95 m</td>
<td></td>
<td>535 Fr/E</td>
<td>715 m²</td>
<td>362'525 Fr</td>
<td>362'525 Fr</td>
</tr>
<tr>
<td>Strassenüberführung (Stampfistr.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Auffüllung L=300m</td>
<td></td>
<td>100 Fr/E</td>
<td>12'000 m²</td>
<td>1'200'000 Fr</td>
<td>1'200'000 Fr</td>
</tr>
<tr>
<td>Höherlegung Strasse L=300m</td>
<td></td>
<td>535 Fr/E</td>
<td>2'250 m²</td>
<td>1'203'750 Fr</td>
<td>1'203'750 Fr</td>
</tr>
<tr>
<td>Alternativlösung*</td>
<td>Pauschalschätzung</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>offene Strecke Süd1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aushub (Trog) L=160m</td>
<td></td>
<td>200 Fr/E</td>
<td>28'000 m²</td>
<td>5'200'000 Fr</td>
<td>5'200'000 Fr</td>
</tr>
<tr>
<td>Strassenbau L=390 m</td>
<td></td>
<td>535 Fr/E</td>
<td>2'925 m²</td>
<td>1'564'875 Fr</td>
<td>1'564'875 Fr</td>
</tr>
<tr>
<td>offene Strecke Süd2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Strassenbau L=190 m</td>
<td></td>
<td>535 Fr/E</td>
<td>1'500 m²</td>
<td>802'500 Fr</td>
<td>802'500 Fr</td>
</tr>
<tr>
<td>Anschluss Eglisau-Süd L=40m</td>
<td></td>
<td>535 Fr/E</td>
<td>300 m²</td>
<td>160'500 Fr</td>
<td>160'500 Fr</td>
</tr>
<tr>
<td>Total Strasse</td>
<td></td>
<td></td>
<td></td>
<td>11'298'000 Fr</td>
<td>9'894'000 Fr</td>
</tr>
<tr>
<td>Kunstbauten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stützmauer Einschnitt Strecke Nord L=80m</td>
<td>1'000 Fr/E</td>
<td>400 m²</td>
<td>400'000 Fr</td>
<td>400'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Stützmauer Einschnitte Strecke Süd L=160m</td>
<td>1'000 Fr/E</td>
<td>2'300 m²</td>
<td>2'300'000 Fr</td>
<td>2'300'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Bodenplatte (Trog) L=160m</td>
<td></td>
<td>1'000 Fr/E</td>
<td>1'600 m²</td>
<td>1'600'000 Fr</td>
<td>1'600'000 Fr</td>
</tr>
<tr>
<td>Stützmauer Strassenüberführung L=300m</td>
<td></td>
<td>1'000 Fr/E</td>
<td>2'000 m²</td>
<td>2'000'000 Fr</td>
<td>2'000'000 Fr</td>
</tr>
<tr>
<td>Tunnel Nord L=310m</td>
<td></td>
<td>100'000 Fr/E</td>
<td>310 m</td>
<td>31'000'000 Fr</td>
<td>40'300'000 Fr</td>
</tr>
<tr>
<td>Brücke Eglisau L=185m, B=10m</td>
<td></td>
<td>4'000 Fr/E</td>
<td>1'850 m²</td>
<td>7'400'000 Fr</td>
<td>4'625'000 Fr</td>
</tr>
<tr>
<td>Tunnel Süd, bergmännisch L=700m</td>
<td></td>
<td>100'000 Fr/E</td>
<td>700 m</td>
<td>70'000'000 Fr</td>
<td>91'000'000 Fr</td>
</tr>
<tr>
<td>Tunnel Süd, Tagbau L=120m</td>
<td></td>
<td>43'000 Fr/E</td>
<td>120 m</td>
<td>5'160'000 Fr</td>
<td>5'160'000 Fr</td>
</tr>
<tr>
<td>Hangsicherung offene Strecke Süd 2 L=250m</td>
<td>750 Fr/E</td>
<td>6'250 m²</td>
<td>4'687'500 Fr</td>
<td>1'875'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Unterführung L=80m</td>
<td></td>
<td>43'000 Fr/E</td>
<td>80 m</td>
<td>3'440'000 Fr</td>
<td>3'440'000 Fr</td>
</tr>
<tr>
<td>Total Kunstbauten</td>
<td></td>
<td></td>
<td></td>
<td>159'688'000 Fr</td>
<td>122'400'000 Fr</td>
</tr>
<tr>
<td>Landerwerb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Landerwerb Bauland</td>
<td></td>
<td>600 Fr/E</td>
<td>3'000 m²</td>
<td>1'800'000 Fr</td>
<td>1'800'000 Fr</td>
</tr>
<tr>
<td>Landerwerb Landwirtschaft</td>
<td></td>
<td>15 Fr/E</td>
<td>5'000 m²</td>
<td>750'000 Fr</td>
<td>750'000 Fr</td>
</tr>
<tr>
<td>Total Landerwerb</td>
<td></td>
<td></td>
<td></td>
<td>187'500 Fr</td>
<td>187'500 Fr</td>
</tr>
<tr>
<td>Diverses</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lichtsignalanlage</td>
<td></td>
<td>400'000 Fr/Stk</td>
<td>1 Stk</td>
<td>400'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Lichtsignalanlage</td>
<td></td>
<td>600'000 Fr/Stk</td>
<td>1 Stk</td>
<td>600'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Total Diverses</td>
<td></td>
<td></td>
<td></td>
<td>600'000 Fr</td>
<td>400'000 Fr</td>
</tr>
<tr>
<td>Baukosten (exkl. Landerwerb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kleinpositionen/Baunebenkosten</td>
<td>5 %</td>
<td>5 %</td>
<td>1'715'900 Fr</td>
<td>132'690'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Installationskosten</td>
<td>5 %</td>
<td>5 %</td>
<td>8'380'000 Fr</td>
<td>8'710'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Unvorhergesehenes inkl. MwSt.</td>
<td>20 %</td>
<td>10 %</td>
<td>36'030'000 Fr</td>
<td>14'140'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Projektierung /Bauleitung</td>
<td>15 %</td>
<td>10 %</td>
<td>27'030'000 Fr</td>
<td>14'140'000 Fr</td>
<td></td>
</tr>
<tr>
<td>Total Investitionskosten</td>
<td></td>
<td></td>
<td></td>
<td>254'115'000 Fr</td>
<td>178'625'000 Fr</td>
</tr>
</tbody>
</table>

* Umleitung der Stampfi-Strasse über Parzelle Nr. 2356 auf dem niveau der verlängerten Tunneldecke

Tabelle 10: Kostenschätzung für die neue Variante der Umfahrung Eglisau

Für die zweistreifige, ca. 2.25 km lange Hauptverkehrsstrasse (Fahrbahnbreite von 7.5 m) ergaben sich die gesamten Investitionskosten zwischen ca. 178 und 254 Mio. CHF. Die Baukosten allein betrugen ca. 133 bis 172 Mio. CHF. Dies entspricht ca. 68 bis 75 % der gesamten Investitionskosten. Erwartungsgemäß beanspruchen den dominierenden Teil der Baukosten mit ca. 106 bis 138 Mio. CHF die Aufwendungen für die beiden Tunnels.
5.1.6 Verkehrsauswirkungen der Umfahrung

Die Auswirkungen der Umfahrung Eglisau wurden mit Hilfe des Verkehrsmodells abgeschätzt (vgl. auch Anhänge 3.5 und 3.9). Bei den Berechnungen ist der bereits realisierte Galgenbucktunnel in Neuhausen am Rheinfall berücksichtigt.

Die Umfahrungsstrasse bewirkt im Planungszustand 2030 erwartungsgemäss eine deutliche Entlastung der Ortsdurchfahrt von Eglisau. Wie aus Tabelle 11 ersichtlich ist, reduziert sich der werktägliche Tagesverkehr DWV auf der Ortsdurchfahrt Eglisau von 25'300 auf 7'290 Fz/Tag, also um mehr als 70 %. Dabei wird für die neue Umfahrungsstrasse mit 18'360 Fz/Tag eine recht hohe Belastung prognostiziert. Ihre Verarbeitung setzt voraus, dass die Verbesserungsmassnahmen am Grosskreisel Bülach sowie im Hardwald realisiert werden, sodass keine Behinderungen des Betriebs auf der Umfahrungsstrasse auftreten.

<table>
<thead>
<tr>
<th>Ortsdurchfahrt*</th>
<th>Umfahrung</th>
<th>Veränderung auf Ortsdurchfahrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Umfahrung DwV [Fz/Tag]</td>
<td>mit Umfahrung DwV [Fz/Tag]</td>
<td>DwV [Fz/Tag]</td>
</tr>
<tr>
<td>Vorliegende Untersuchung</td>
<td>25'360</td>
<td>7'290</td>
</tr>
<tr>
<td>Planungsstudie ZH [1]</td>
<td>26'200</td>
<td>6'400</td>
</tr>
</tbody>
</table>

* Querschnitt alte Rheinbrücke

Tabelle 11: Belastungsveränderungen durch die Umfahrung Eglisau im Planungszustand 2030

Die Reisezeit auf der ca. 1.7 km langen Ortsdurchfahrt zwischen dem Kreisel Eglisau-Nord und dem Ortsausgang von Eglisau beträgt heute gemäss Tabelle 1 in Richtung Nord-Süd ca. 7.6 Min. (Morgenspitze mit Stau) bzw. 2.9 Min. (Zwischenzeit) und in Richtung Süd - Nord ca. 2.6 Min. (Abendspitze) bzw. 2.3 Min. (Zwischenzeit). Auf der 2.2 km langen Umfahrungsstrasse würde die Reisezeit bei der Annahme einer mittleren Geschwindigkeit von 75 km/h ca. 1.5 Min. betragen. Gegenüber heute im Zustand ohne Behinderung (Zwischenzeiten) ergibt sich auf der Umfahrungsstrasse eine Reisezeitverkürzung von ca. 0.8 bis 1.4 Min. Dies entspricht ca. 4 bis 6% der heutigen Reisezeit zwischen Neuhausen am Rheinfall (Bahnunterführung Zollstrasse) und Bülach-Nord (Ende A51). Diese beträgt heute in den Zwischenzeiten ca. 21.0 bzw. 22.4 Min (vgl. Tabelle 1).

5.2 Umfahrung Jestetten

5.2.1 Ausgangslage

Für die Umfahrung der deutschen Gemeinde Jestetten wurde uns ein Situationsplan eines Vorentwurfs des Strassenbauamtes Bad Säckingen aus dem Jahr 1984 zugestellt (vgl. Anhang 9). Er enthält eine sehr großzügig trassierte Linienführung, die offensichtlich auf eine Ausbaugeschwindigkeit von 100 km/h ausgelegt ist. Im südlichen Teil wird nach der Brückenquerung des Volkenbachs der ca. 60 m erhöhte Hügel des Breitenhags rechtwinklig gequert, was in diesem Bereich sehr tiefe Einschnitte erfordert. Zudem wird hier das Wald- und Naturerholungsgebiet tangiert.

5.2.2 Rahmenbedingungen

Für den Entwurf der in 5.2.3 beschriebenen Variante wurden die wichtigsten Rahmenbedingungen wie folgt festgelegt:

- Zielsetzung

- Ausbaugrad und Anschlusspunkte der Umfahrung
 Für den neuen Entwurf wurde von folgenden Projektierungsvorgaben ausgegangen:
 - Strassentyp Hauptverkehrsstrasse (nach Schweizernorm [16])
 - Ausbaugeschwindigkeit von 80 km/h (Mindestradius der Kurven = 240 m)
 - zweistreifiger Querschnitt ohne Standstreifen, mit Fahrbahnbreite von 7,50 m
 - Vertikale Linienführung so ausgelegt, dass nach SN 640138b [17] keine Zusatzstreifen in Steigungen erforderlich sind
 - Ausbildung der Knotenpunkte erfolgt in einer Ebene
 - Anschlusspunkt-Nord: T-förmige Einmündung
 - Anschlusspunkt-Industrie/Gewerbe: T-förmige Einmündung
 - Anschlusspunkt-Süd: T-förmige Einmündung.

5.2.3 Beschrieb der Umfahrungsvariante

Aufgrund der Festlegungen in 5.2.2 wurde die nachfolgend beschriebene Variante der Umfahrung Jestetten entworfen. Sie ist im Anhang 10.1 (Situationsplan) bzw. 10.2 (Längenprofil) dargestellt. Zur besseren Nachvollziehbarkeit sind nachfolgend auch die entsprechenden Planausschnitte wiedergegeben.

- Abschnitt Hart bis Anschluss Gewerbegebiet (km 0.0 bis km 1.6)
 Der Anschluss der bestehenden B27 an die neue Umfahrungsstrasse erfolgt mittels einer T-Einmündung im Bereich von Langäcker (bei ca. km 0.4). Hier befindet sich die Umfahrungsstrasse in einer Kurve mit Radius von ca. 300 m. Anschliessend wird die Bahnanbindung mit einer kurzen Überführung gequert und das Trassen verläuft in einer Gerade östlich von Lettseemadel. Nach der Überführung der bestehenden Attenburgerstrasse (ca. km 0.88) folgt eine langgezogene Kurve mit einem Radius von ca. 300 m (vgl. auch Optimierungshinweis in Fußnote 32). Südlich der Anhöhe Hungerbühl ist der Anschluss für das Gewerbegebiet vorgesehen. Die bestehende Hohentwielstrasse wird bei km 1.6 T-förmig an die Umfahrungsstrasse angeschlossen. Die vertikale Linienführung auf dem gesamten Abschnitt folgt weitgehend dem bestehenden Gelände.

37 Im Projekt-Vorentwurf aus dem Jahr 1984 war kein Anschluss für das Gewerbegebiet vorgesehen.
Abschnitt Anschluss Gewerbegebiet bis Barstlet (km 1.6 bis km 3.8)

Südlich der T-Einmündung verläuft die Umfahrung in einer Gerade ungefähr auf dem Trasse der bestehenden Erschliessungsstrasse (Hohentwielstrasse). In diesem Abschnitt besteht bei der horizontalen Linienführung noch ein Optimierungsbedarf. Bei ca. km 2.0 wird mittels einer Überführung die bestehende Verbindungsstrasse nach Attenburg (Unter der Bernseeuweis) überquert. Anschliessend muss das Tal des Volkenbachs sowie der Volkenbachstrasse (K 6582) in einer Kurve mit einer bis zu ca. 30 m hohen und ca. 460 m langen Brücke überspannt werden. Die Talquerung erfolgt östlich der Talmühle, auserhalb des bewaldeten Gebietes.

Das östliche Brückenwiderlager befindet sich im Abhang oberhalb der K 6582. Das westliche Brückenwiderlager wird unmittelbar hinter der bestehenden Birretstrasse erstellt, sodass diese unterhalb der Brücke geführt werden kann. Der Brücke folgt eine langgezogene Kurve (ca. 160 Grad) mit einem Radius von ca. 240 m. In diesem Bereich verläuft das Trasse im Einschnitt. Dadurch soll das ca. 100 m entfernte und tiefer gelegene Wohngebiet (Gücht) vom Verkehrslärm abgeschirmt werden. Am Ende der Kurve wird das Trasse der Umfahrung an die bestehende B 27 in Richtung Lottstetten angegeschlossen (Gebiet Barstlet bei ca. km 3.8). Der Anschluss Jestetten-Süd ist wiederum als eine T-Einmündung bei ca. km 3.3 vorgesehen.

Ausschnitt Situationsplan

Ausschnitt Längenprofil

Die beiden Kurvenradien R zwischen ca. km 1.0 und 1.4 (R = 300m) sowie zwischen ca. km 1.9 und 2.1 (R = 300m) sollten auf ca. 500 m bzw. 1’000 m vergrössert werden. Die diesbezüglich angepasste Linienführung ist im Anhang 10.1 mit gestrichelter Linie einge- tragen.
Die Gesamtlänge der Umfahrung ergibt sich zu ca. 3.78 km. Zum Vergleich war in der Variante aus dem Jahr 1984 eine Länge von ca. 3.5 km vorgesehen. Die kostenintensive Brückenüberquerung des Volkenbachs wird im Längenprofil mit 460 m angegeben. Durch die Senkung der Nivelette könnte diese Länge auch noch etwas verkürzt werden.

5.2.4 Kostenschätzung

Die Ergebnisse der Kostenschätzung sind in Tabelle 12 zusammengestellt. Analog zu 5.1.5 wurden auch hier verschiedene Erfahrungswerte für die Einheitspreise verwendet. Aus den Berechnungen resultiert somit ein Kostenbereich, in welchem die Aufwendungen erwartet werden können. Die angegebenen Ausmass basieren auf den Planunterlagen im Anhang 10.1 (Situationsplan) bzw. 10.2 (Längenprofil).

<table>
<thead>
<tr>
<th>Kostenelement</th>
<th>Länge</th>
<th>Breite</th>
<th>Einheitspreise</th>
<th>Ausmass</th>
<th>max. Total</th>
<th>min. Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Strasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>offene Strecke</td>
<td>3'080 m</td>
<td>7.5 m</td>
<td>535 Fr/E</td>
<td>23'115 m2</td>
<td>12'367'000 Fr</td>
<td>12'367'000 Fr</td>
</tr>
<tr>
<td>Schüttungen</td>
<td>835 m</td>
<td></td>
<td>100 Fr/E</td>
<td>3'078'000 m3</td>
<td>3'078'000 Fr</td>
<td>3'078'000 Fr</td>
</tr>
<tr>
<td>Abtrage/Einschnitte</td>
<td>630 m</td>
<td></td>
<td>200 Fr/E</td>
<td>2'700'000 m3</td>
<td>5'400'000 Fr</td>
<td>5'400'000 Fr</td>
</tr>
<tr>
<td>Total Strasse</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>20'845'000 Fr</td>
<td>20'845'000 Fr</td>
</tr>
<tr>
<td>Kunstbauten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Überführungen (3x80m)</td>
<td>240 m</td>
<td>10 m</td>
<td>2'500 Fr/E</td>
<td>2'400 m2</td>
<td>6'000'000 Fr</td>
<td>3'750'000 Fr</td>
</tr>
<tr>
<td>3 Überführungen (3x50m)</td>
<td>150 m</td>
<td>10 m</td>
<td>2'500 Fr/E</td>
<td>1'500 m2</td>
<td>4'050'000 Fr</td>
<td>1'800'000 Fr</td>
</tr>
<tr>
<td>Stützmauern</td>
<td>450 m</td>
<td>10 m</td>
<td>1'000 Fr/E</td>
<td>4'050 m2</td>
<td>4'050'000 Fr</td>
<td>1'800'000 Fr</td>
</tr>
<tr>
<td>Brücke</td>
<td>460 m</td>
<td>10 m</td>
<td>4'000 Fr/E</td>
<td>4'600 m2</td>
<td>18'400'000 Fr</td>
<td>11'500'000 Fr</td>
</tr>
<tr>
<td>Total Kunstbauten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>28'450'000 Fr</td>
<td>17'050'000 Fr</td>
</tr>
<tr>
<td>Landerwerb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bauland</td>
<td>1'000 m</td>
<td>10 m</td>
<td>400 Fr/E</td>
<td>10'000 m2</td>
<td>4'000'000 Fr</td>
<td>4'000'000 Fr</td>
</tr>
<tr>
<td>Landwirtschaftsfläche</td>
<td>2'040 m</td>
<td>10 m</td>
<td>15 Fr/E</td>
<td>20'400 m2</td>
<td>30'600 Fr</td>
<td>30'600 Fr</td>
</tr>
<tr>
<td>Total Landerwerb</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4'306'000 Fr</td>
<td>4'306'000 Fr</td>
</tr>
<tr>
<td>Baukosten (exkl. Landerwerb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>49'295'000 Fr</td>
<td>37'885'000 Fr</td>
</tr>
<tr>
<td>Kleinpositionen/Baunebenkosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>2'429'000 Fr</td>
<td>2'429'000 Fr</td>
</tr>
<tr>
<td>Installationskosten</td>
<td>5 %</td>
<td>5 %</td>
<td></td>
<td></td>
<td>2'551'000 Fr</td>
<td>2'551'000 Fr</td>
</tr>
<tr>
<td>Unvorhergesehenes inkl. MwSt. inkl. MwSt.</td>
<td>20 %</td>
<td>10 %</td>
<td></td>
<td></td>
<td>4'032'000 Fr</td>
<td>4'032'000 Fr</td>
</tr>
<tr>
<td>Projektierung/Bauleitung</td>
<td>15 %</td>
<td>10 %</td>
<td></td>
<td></td>
<td>7'764'000 Fr</td>
<td>7'764'000 Fr</td>
</tr>
<tr>
<td>Total Investitionskosten</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>72'460'000 Fr</td>
<td>50'940'000 Fr</td>
</tr>
</tbody>
</table>

Tabelle 12: Kostenschätzung für die neue Variante der Umfahrung Jestetten

Für die zweistreifige, ca. 3.78 km lange Hauptverkehrsstrasse (Fahrbahnbreite von 7.5 m) ergaben sich die gesamten Investitionskosten zwischen ca. 51 und 72 Mio CHF. Die Baukosten allein betrugen ca. 38 bis 49 Mio. CHF. Dies entspricht ca. 68 bis 74 % der gesamten Investitionskosten. Den grössten Teil der Baukosten beansprucht mit ca. 11.5 bis 18.5 Mio. CHF die Aufwendung für die Brückenquerung des Volkenbachs.

5.2.5 Verkehrsauwirkungen der Umfahrung

Die Auswirkungen der Umfahrung Jestetten wurden wiederum mit Hilfe des Verkehrsmodells abgeschätzt (vgl. auch Anhänge 3.6 und 3.10). Bei den Berechnungen ist der bereits realisierte Galgenbucktunnel in Neuhausen am Rheinfall berücksichtigt.

Entspricht ca. 42 Mio. bis 60 Mio. EURO (1 CHF = 0.830 EUR)
Die Umfahrungsstrasse bewirkt im Planungszustand 2030 erwartungsgemäss eine deutliche Entlastung der Ortsdurchfahrt von Jestetten. Wie aus Tabelle 13 ersichtlich, reduziert sich der werktägliche Tagesverkehr DWV auf der Ortsdurchfahrt Jestetten von 8'690 bis 11'550 auf 2'980 bis 5'800 Fz/Tag, also um ca. 66 bis 50 %. Für die neue Umfahrungsstrasse wird jedoch mit ca. 5'800 Fz/Tag eine für den Strassentyp Hauptverkehrsstrasse nur geringe Belastung prognostiziert. Angesichts der geschätzten Investitionskosten gemäss Tabelle 12 und einer niedrigen Auslastung der Umfahrungsstrasse erscheint diese Investition zu mindest im kurz- bis mittelfristigen Planungszeitraum kaum gerechtfertigt.

<table>
<thead>
<tr>
<th>Ortsdurchfahrt</th>
<th>Umfahrung</th>
<th>Veränderung auf Ortsdurchfahrt</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Umfahrung DWV [Fz/Tag]</td>
<td>mit Umfahrung DWV [Fz/Tag]</td>
<td>DWV [Fz/Tag]</td>
</tr>
<tr>
<td>8'690 bis 11'550</td>
<td>2'980 bis 5'800</td>
<td>5'820</td>
</tr>
</tbody>
</table>

Tabelle 13: Belastungsveränderungen durch die Umfahrung Jestetten im Planungszustand 2030

Die Reisezeit auf der ca. 1.6 km langen Ortsdurchfahrt von Jestetten (zwischen Kreisel B27/L163 im Süden und der Bahnüberführung im Norden) beträgt heute gemäss Tabelle 1 in Richtung Nord-Süd ca. 2.2 Min. (Morgenspitze) bzw. 2.6 Min. (Zwischenzeit) und in Richtung Süd - Nord ca. 2.7 Min. (Abendspitze) bzw. 2.0 Min. (Zwischenzeit). Berücksichtigt man für den Vergleich mit der neuen Umfahrung noch die anschliessenden Ausserortsabschnitte bis zum Beginn und Ende der Umfahrungsstrasse (insgesamt 1.5 km), ergibt sich eine gesamte Vergleichslänge von 3.1 km. Dadurch erhöhen sich die Reisezeiten bei der Annahme einer mittleren Geschwindigkeit ausserorts von 80 – 90 km/h um ca. 1.0 bis 1.1 Min. auf ca. 3.0 bis 3.8 Min.

Auf der ca. 3.78 km langen Umfahrungsstrasse würde die Reisezeit bei der Annahme einer mittleren Geschwindigkeit von 80 – 90 km/h ca. 2.6 bis 2.9 Min. betragen. Gegenüber heute im Zustand ohne Behinderung (Zwischenzeiten) ergibt sich auf der Umfahrungsstrasse eine Reisezeitverkürzung von ca. 0.6 bis 1.0 Min. Dies entspricht ca. 25 bis 45% der heutigen Reisezeit zwischen Neuhausen am Rheinfall (Bahnunterführung Zollstrasse) und Bülach-Nord (Ende A51). Diese beträgt heute in den Zwischenzeiten ca. 21.0 bzw. 22.4 Min (vgl. Tabelle 1).
6. Auswirkungen auf die Gemeinde Neuhausen am Rheinfall

Gemäss Auftragsteil B (vgl. 1.2) werden in diesem Kapitel „die verkehrlichen Auswirkungen eines Ausbaus der Achse Neuhausen – Jestetten – Eglisau – Bülach (Hauptstrasse H4) auf die Gemeinde Neuhausen am Rheinfall sowie die erforderlichen Massnahmen, namentlich Verkehrslenkung und Neuhauserwaldtunnel, um die nicht gewünschte erhöhte Belastung von Neuhausen am Rheinfall, insbesondere entlang der Zollstrasse zu verhindern, aufgezeigt. Soweit möglich sind dabei auch die Auswirkungen der in den nächsten fünf Jahren geplanten Verbesserungen im öffentlichen Verkehr zu berücksichtigen“.

6.1 Ausgangslage

Wie in 2.2.2 ausgeführt, haben sich die Verkehrsmengen nach Eröffnung der Bahnunterführung Zollstrasse relativ stark erhöht. Die Zunahme zwischen den Jahren 2006 (ohne) und 2009 (mit Unterführung) betrug ca. 8.6%. Gemäss Tabelle 4 betrug im Jahre 2010 der DWV an der Zollstrasse zwischen 10'050 Fz/Tag (Zollamt) und 13'570 Fz/Tag (Bahnunterführung). Im Referenzzustand 2030 erhöht sich der DWV gemäss Modellberechnungen auf 11'900 bis 15'650 Fz/Tag, die Zunahme beträgt zwischen 15.3 und 18.4%.

Nach der Eröffnung des Galgenbucktunnels (vgl. Abbildung 15) werden die Verkehrsbelastungen auf der Zollstrasse leicht reduziert. Für den Planungszustand 2030 ergeben sich gemäss Modellberechnungen zwischen der Bahnunterführung in Neuhausen und Jestetten gegenüber dem Referenzzustand Abnahmen von ca. 2.0 bis 4.3%. Aus dem Vergleich der Belastungspläne in den Anhängen 3.4 und 3.2 bzw. 3.8 ist ersichtlich, dass der DWV in diesem Bereich nur um ca. 350 Fz/Tag abnimmt, südlich von Jestetten resultieren auf der H4 praktisch keine Veränderungen mehr.

Anders präsentiert sich die Situation in der West-Ost-Richtung von Neuhausen. Wie aus Tabelle 14 ersichtlich, wird der Galgenbucktunnel mit über 18'500 Fz/Tag an den Werktagen ähnlich stark ausgelastet wie die Umfahrung von Eglisau (vgl. 5.1.6). Dementsprechend ist die Entlastungswirkung entlang der vormaligen Verbindung von Klettgau nach Schaffhausen sehr hoch (-77.8% bzw. –47.3%).

<table>
<thead>
<tr>
<th>Strassenabschnitt</th>
<th>DWV ohne Galgenbucktunnel [Fz/Tag]</th>
<th>DWV mit Galgenbucktunnel [Fz/Tag]</th>
<th>Veränderungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Galgenbucktunnel</td>
<td>-</td>
<td>18'550 (20'542)</td>
<td>+18'550 (+20'542)</td>
</tr>
<tr>
<td>Klettgauerstrasse</td>
<td>20'470 (16'547)</td>
<td>4'540 (4'624)</td>
<td>-15'930 (-11'913)</td>
</tr>
<tr>
<td>östlich der Zollstr.</td>
<td>22'770 (27'112)</td>
<td>11'980 (13'726)</td>
<td>-10'780 (-13'386)</td>
</tr>
<tr>
<td>Zollstrasse, Höhe Bahnunterführung</td>
<td>15'050 (15'910)</td>
<td>15'330 (15'538)</td>
<td>-320 (-372)</td>
</tr>
</tbody>
</table>

(Klammerwerte) = Belastungsveränderungen des DTV infolge Galgenbucktunnel im Planungszustand 2020 aus Prognose in [7]

Die künftige Verbindung via Galgenbucktunnel bedeutet für die Fahrten zwischen der Stadt Schaffhausen und Bülach gegenüber heute (via Schaffhauser- und Klettgauerstrasse) zwar einen gewissen Umweg, der aber durch die höhere Tempolimite (80 km/h) kompensiert wird. Diese Aspekte wurden bei den Modellberechnungen berücksichtigt.

Im Agglomerationsprogramm des Kantons Schaffhausen sind nach der Eröffnung des Galgenbucktunnels auch flankierende Verkehrserhöhungsmassnahmen auf den bisherigen Routen (über Klettgauerstrasse und über die Schaffhauserstrasse) vorgesehen. So soll in der Klettgauerstrasse zwischen Enge- und Zollstrasse der zweite Fahrstreifen stadeinwärts in eine Busspur umgewandelt werden und östlich der Zollstrasse ist eine Umbestaltung zu einer Kernfahrtrbahn vorgesehen. Zudem soll der bestehende Kreisel bei der Einmündung der Zentral- in die Schaffhauserstrasse aufgehoben werden. Diese Massnahmen, die im
Planungszustand 2030 umgesetzt werden dürften, können in dem hier eingesetzten Verkehrsmodell nicht direkt berücksichtigt werden.

6.2 Auswirkungen des Ausbaus der Hauptstrasse H4
Unter dem Zustand „Ausbau der Hauptstrasse H4“ werden die folgenden Veränderungen gegenüber dem heutigen Zustand verstanden:

- Der Galgenbucktunnel (vgl. in 6.1) ist im Betrieb
- Die Umfahrungen von Eglisau und Jestetten sind realisiert

Die Umsetzung der Verbesserungsmassnahmen am Grosskreisel Bülach sowie in der Durchfahrt Hardwald (mindestens gemäss Zustand 3, vgl. 4.3) wird zwar vorausgesetzt, kann jedoch mit dem vorliegenden Verkehrsmodell nicht direkt berücksichtigt werden.

6.3 Massnahmen gegen erhöhte Verkehrsbelastung entlang der Zollstrasse
Wie in 2.1.2 erwähnt, hat der Verkehr am Zoll Neuhausen nach der Eröffnung der Bahnunterführung Zollstrasse relativ stark zugenommen. Zwischen den Jahren 2006 (ohne) und 2009 (mit Unterführung) hat sich die DTV-Verkehrsmenge von ca. 8'380 Fz/Tag auf 9'100 Fz/Tag, also um ca. 8.6% erhöht. Die 9'100 Fz/Tag entsprechen dem DWV von 9'910 Fz/Tag und werden im Verkehrsmodell für das Jahr 2010 mit 10'050 Fz/Tag geschätzt. Aus Tabelle 2 und Tabelle 4 ist ersichtlich, dass die Verkehrsmenge 2010 zwischen dem Zoll und der Bahnunterführung von 10'050 Fz/Tag auf 15'570 Fz/Tag zunimmt. Bei dieser Differenz von ca. 3'000 Fz/Tag handelt es sich also um internen Verkehr, erzeugt in den Siedlungsgebieten von Neuhausen.
sen, südlich der Klettgauerstrasse. Im Zustand 2030 erhöhen sich die DWV-Werte um ca.15.3 bis 18.4 % auf 11'900 bis 15'650 Fz/Tag (Differenz von ca.3'750 Fz/Tag).

Obwohl sich die Umfahrungen von Eglisau und Jestetten gemäss 6.2 nicht wesentlich auf die Belastungen der Zollstrasse auswirken, wird die H4 in Neuhausen im Planungszustand 2030 mit bis zu 15'650 Fz/Tag stark ausgelastet.

Wie in 4.2.3 dargelegt, ist im Agglomerationsprogramm des Kantons (vgl. [13]) als Massnahme gegen die Belastungszunahme vorgesehen, den vom Süden einfahrenden Verkehr in den Spitzenzeiten mittels einer Lichtsignalanlage zu dosieren. Die entsprechende Pförtneranlage ist am Knoten Zoll-/Chlaffentalstrasse / Buchweg vorgesehen (vgl. Abbildung 13). Der dort vorhandene Stauraum bis zur Zollstelle von bis zu ca. 350 m stellt für die Betreiber einen ausreichenden Spielraum dar, um den vom Süden einfahrenden Verkehr in den Spitzenzeiten gezielt zu beeinflussen. Allerdings werden dadurch die Reisezeiten für den Durchgangsverkehr beeinträchtigt bzw. die Dauer der Spitzenverkehrszeiten verlängert.

Als eine Massnahme zur wirksamen Entlastung der Zollstrasse hat die Stadtverwaltung von Neuhausen vorgeschlagen, die Idee einer Tunnelumfahrung modellmässig zu prüfen. Zu diesem Zweck wurde nach Absprache mit den Verantwortlichen der Stadt Neuhausen die Linienführung des Tunnels unter dem Neuhauserwald gewählt (vgl. Abbildung 15). Dazu wurden die Anschlusspunkte der Tunnelumfahrung wie folgt festgelegt:

- Der südliche Anschluss befindet sich im Bereich von Hohrain, ca. 250 m nördlich der Zollstation; der Knoten mit der Zollstrasse ist als T-Einmündung vorgesehen

Abbildung 15: Linienführung des Neuhauserwaldtunnels und seine nördlich Einführung
Aus den obigen Festlegungen resultiert eine Tunnellänge von ca. 2,5 km\(^3\). Für diese Netzergänzung wurden anschliessend Modellberechnungen durchgeführt. Das Ergebnis ist im Anhang 3.7 (DWV-Belastungen) und im Anhang 3.11 (Querschnittsdifferenzen DWV) dargestellt. Demnach würde der Neuhauserwaldtunnel mit ca. 8'620 Fz/Tag belastet (vgl. Tabelle 15). Die Zollstrasse weist eine Belastung zwischen ca. 3'710 (Einfahrt Neuhausen) und ca. 6'650 Fz/Tag (bei der Bahnunterführung) auf. Dies entspricht einer Abnahme gegenüber dem Zustand ohne Umfahrungstunnel von ca. 34% bis ca. 57%.

<table>
<thead>
<tr>
<th>Ortsdurchfahrt Zollstrasse</th>
<th>Umfahrung Neuhauserwaldbahn</th>
<th>Veränderung auf Ortsdurchfahrt Zollstrasse</th>
</tr>
</thead>
<tbody>
<tr>
<td>ohne Umfahrung DWV [Fz/Tag]</td>
<td>mit Umfahrung DWV [Fz/Tag]</td>
<td>DWV [Fz/Tag]</td>
</tr>
<tr>
<td>11'900 bis 13'650</td>
<td>3'710 bis 6'650</td>
<td>8'620</td>
</tr>
<tr>
<td></td>
<td></td>
<td>7'850 bis -6'690</td>
</tr>
</tbody>
</table>

Tabelle 15: Belastungsveränderungen durch die Umfahrung Neuhauserwaldbahn im Planungszustand 2030

Aus dem Anhang 3.11 ist auch ersichtlich, dass der Galgenbucktunnel durch diese Netzergänzung eine beträchtliche Mehrbelastung von ca. 6'720 Fz/Tag (+36.3%) erfahren würde. Die ermittelte Verkehrsbelastung für die Werktage (DWV) von 25'250 Fz/Tag\(^3\) liegt bereits im Bereich der Kapazität von zweistreifigen Tunnel mit Gegenverkehr. Demgegenüber weisen die Klettgauerstrasse (-1'670 Fz/Tag) und vor allem die Schaffhauserstrasse (-6'070 Fz/Tag) eine deutliche Entlastung auf. Südlich der Zollstation sind auf der H4 praktisch keine Auswirkungen der Umfahrung Neuhauserwaldbahn mehr feststellbar.

6.4 Auswirkungen der Verbesserungen im öffentlichen Verkehr

Wie im Auftragsteil B (vgl. 1.2) von der Gemeinde Neuhausen am Rheinfall angeregt, sollen soweit möglich auch die Auswirkungen der in den nächsten fünf Jahren geplanten Verbesserungen im öffentlichen Verkehr zu berücksichtigen. Dabei interessiert vor allem die Frage, wie weit die bahnseitigen Verbesserungen zur Verkehrsentlastung der Hauptstrasse H4, bzw. der Zollstrasse in Neuhausen beitragen. Da im Gesamtverkehrsmodell des Kantons Zürich die Modellierung dieser Auswirkungen nicht möglich ist, wurden sie in dieser Vorstudie grob abgeschätzt.

6.4.1 Geplante Angebotsverbesserungen im öffentlichen Verkehr

Für die Stadt Schaffhausen und die Gemeinde Neuhausen verbessert sich das Angebot Richtung Zürich und die Region Zürich Nord/Flughafen dadurch deutlich. Die Verbesserungen betreffen sowohl die Häufigkeit, die Fahrzeit wie auch die Zahl der notwendigen Umsteigevorgänge. Eine ausführliche Gegenüberstellung ist in den Tabellen des Anhangs 11 ausgewiesen.

\(^{34}\) Die Kosten für Bauarbeiten für diesen Tunnel werden auf ca. 250 bis 300 Mio. CHF (ohne Baunebenkosten, Installationskosten, Kosten für Projektierung und Bauleitung sowie Unvorhergesehenes) geschätzt.

\(^{35}\) Zum Vergleich betrug im Jahr 2010 der DWV im Gotthardtunnel ca. 16’080 Fz/Tag

6.4.2 Abschätzung der Verkehrsverlagerungen

Durch die Angebotsverbesserung wird die Nachfrage im öffentlichen Verkehr deutlich steigen. Für die Beziehungen ab den beiden untersuchten Bahnhöfen kann mit ca. 20% Passagierzuwachs auf der Achse via Winterthur und mit ca. 40% Zuwachs auf der Achse via Bülach, alleine durch die Angebotsverbesserung gerechnet werden (vgl. Tabellen im Anhang 11).

Der Nachfragezuwachs beim öffentlichen Verkehr (ÖV) wird nicht vollständig vom MIV verlagert, ein Teil ist auch Neuverkehr, der erst durch die attraktiveren Verbindungen entstehen wird. Wir rechnen beim Nachfragezuwachs beim ÖV mit ca. 2/3 Verlagerung vom MIV. Wie aus Abbildung 17 ersichtlich, entspricht
dieses relativ hohe Verlagerungspotential von der Strasse auf die Bahn (-67% bzw. -2'100 Fz/Tag) einer Abnahme der Strassenbelastungen um ca. 5%. Dabei wird angenommen, dass die Verlagerungen proportional zu den Verkehrsbelastungen auf den beiden Strassenachsen H4 (ca. 12'000 Fz/Tag Richtung Bülach) und A4 (ca. 27'000 Fz/Tag Richtung Winterthur) aufteilen. Gemäss Tabelle 4 wird auf der H4 im Raum Neuhausen (Zollstrasse) eine mittlere Verkehrszunahme von ca. 1% pro Jahr prognostiziert. Die 5%ige Abnahme entspricht somit dem Verkehrszuwachs in 5 Jahren.

Abbildung 17: Geschätzte Verkehrsverlagerungen im Planungszustand 2030

Die Verlagerung durch die Angebotsverbesserung im Bahnparkverkehr alleine bewirkt also noch keine grosse Veränderung der Belastungssituation auf der Strasse. Damit es zu spürbaren Verlagerungen kommt, müsste gleichzeitig auch das MIV-Angebot weniger attraktiv sein, z.B. durch die Parkraumbewirtschaftung am Zielort (weniger und teurere Parkplätze), aber auch durch Erreichung der Kapazitätsgrenze auf der Strasse (Stau, Zeitverluste).

Der geplante Ausbau im öffentlichen Verkehr führt mit einem zweiten Fernverkehrszug pro Stunde und den verlängerten S-Bahnen (S9, S12, S24 als Doppelstockwagen) von Zürich statt Thurbo-Leichtzügen hingegen zu grossen Kapazitätssteigerungen im öffentlichen Verkehr von schätzungsweise über 100%. Der öffentliche Verkehr wäre daher in der Lage, einen wesentlichen Teil des erwarteten Verkehrszuwachses auf der Strasse zu übernehmen.

6.5 Anfragen der Gemeinde Neuhausen am Rheinfall

In der Stellungnahme der Gemeinde Neuhausen zu den Interessen und Zielen der Vorstudie (vgl. Anhang 11.4) wurden auch konkrete Fragen gestellt. Auf diese wird nachfolgend eingegangen.

1. Mit welcher Verkehrszunahme ist in den nächsten 10 bis 20 Jahren im Korridor Schaffhausen – Zürich zu rechnen?

 Wie in Tabelle 4 dargestellt, wird die mittlere Zunahme des DWV entlang der Hauptstrasse 4 zwischen den Zuständen 2010 und 2030 auf ca. 17.6% geschätzt (ca. 0.9% pro Jahr). In der Planungsstudie ZH [1] wird zudem die mittlere Zunahme des induzierten Verkehrs in den umliegenden Gemeinden dieses Korridors mit ca. 20% angegeben.

 Soweit aus den Unterlagen ersichtlich, wird entlang des A4-Korridors eine kleinere Verkehrszunahme erwartet (vgl. Frage 2.)

 Zur Beantwortung diese Frage wurden die Veränderungen der werktäglichen Verkehrslasten (DWV) auf der Nationalstrasse A4 aus den Belastungspflänen in den Anhängen 3.1, 3.2 und 3.5 zusammengestellt. Zum Vergleich sind in Tabelle 16 auch die entsprechenden Werte aus der Planungsstudie
ZH [1] angegeben. Obwohl die A4-Querschnitte nicht deckungsgleich sind, zeigt sich, dass die Verkehrs zunahme zwischen 2010 und 2030 etwa 8 bis 10%, also deutlich weniger als auf der H4-Achse beträgt\(^\text{36}\). Im Zustand mit Umfahrung von Eglisau (und mit Galgenbucktunnel) ergibt sich eine leichte Reduktion des DWV.

<table>
<thead>
<tr>
<th>Zustand</th>
<th>A4 südlich Anschluss Uhwiesen</th>
<th>A4 bei Benken / Trullikon, aus [1]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Referenzzustand 2010</td>
<td>25'220</td>
<td>27'500</td>
</tr>
<tr>
<td>Referenzzustand 2030</td>
<td>27'720</td>
<td>29'700</td>
</tr>
<tr>
<td>Zustand 2030 mit Umfahrung Eglisau</td>
<td>27'280</td>
<td>28'800</td>
</tr>
<tr>
<td></td>
<td>+2'500</td>
<td>+2'200</td>
</tr>
<tr>
<td></td>
<td>-440</td>
<td>-900</td>
</tr>
</tbody>
</table>

Tabelle 16: Verkehrsbelastungen (DWV) auf der A4 südlich von Schaffhausen

Nimmt man auf der A4 etwa 50% des DWV pro Fahrtrichtung (im Planungszustand 2030 je ca. 15‘000 Fz/Tag) und einen Spitzenstundenanteil von ca. 10% an, so ergibt sich die maximale stündliche Belastung pro Richtungsfahrtroute zu ca. 1500 Fz/h. Dies entspricht weniger als der Hälfte der Kapazität der zweistreifigen Richtungsfahrtroute auf Autobahnen\(^\text{37}\). Dies bedeutet, dass die Verkehrszunahme auf der A4 südlich von Schaffhausen im Planungszustand 2030 ohne weiteres abgedeckt werden kann. Diese Beurteilung trifft auch für den südlichen Teil der A4, wo DWV-Werte von bis zu ca. 37‘600 Fz/Tag erwartet werden zu.

3. In welchem Umfang kann der öffentliche Verkehr (Viertelstundentakt und Glattalbahn) die erwartete Verkehrszunahme aufnehmen, ohne dass die Achse Schaffhausen – Jestetten – Eglisau – Bülach ausgebaut werden muss?

Auf diese Frage wurde im Abschnitt 6.4.2 eingegangen.

4. Ist der Neuhauserwaldtunnel eine entscheidende Voraussetzung für die Entwicklung der Achse Schaff hausen – Jestetten – Eglisau – Bülach?

5. Gibt es zu einem Neuhauserwaldtunnel alternative flankierende Massnahmen?

Aus der Sicht der Gemeinde wäre die in 4.2.3 und 6.3 erwähnte Dosierung mittels einer Lichtsignalanlage als eine alternative Massnahme zum Neuhauserwaldtunnel geeignet. Für den Durchgangs- und Zielverkehr würden sich jedoch entsprechende Reisezeitverlängerungen ergeben. Da es sich um eine Kantonstrasse handelt, wären für diese Massnahme entsprechende Vereinbarungen mit dem Kanton Schaffhausen erforderlich.

\(^{36}\) Zum Vergleich ist diese Zunahme im A4-Querschnitt vor der Verzweigung A4/A1 noch geringer. Gemäss Planungsstudie ZH [1] erhöht sich der DWV zwischen dem Referenzzustand 2010 und Referenzzustand 2030 von 36‘200 Fz/Tag auf 37‘600 Fz/Tag, also um ca. 4%.

\(^{37}\) Gemäss VSS-Norm SN 640 018a [18] beträgt die Leistungsfähigkeit bei Längsneigung < 2% je nach Schwerverkehrsanteil zwischen 3‘600 und 4‘000 Fahrzeuge pro Stunde.
7. Zusammenfassung und Empfehlungen
8. Quellenangaben

[18] Schweizerischer Verband der Strassen- und Verkehrsarchitekten (VSS): Norm SN 640138b, Linienführung; Zusatzstreifen in Steigungen und Gefällen
